

SDS232 32 Channel SMB Distribution System

Product Sheet

Description

The SDS232 SMB Distribution System provides electrical connectivity between Vertilon's PhotoniQ multichannel PMT & APD data acquisition systems, and up to 32 charge output devices. Multiple single element PMTs and/or avalanche photodiodes are interfaced to the SDS232 through SMB male bulkhead jacks mounted to its front panel. The SDS232 through a connector on its back panel, is connected to the PhotoniQ using a multichannel, micro-coaxial cable that conforms to Vertilon's standard sensor interface board mating system. This separately ordered cable utilizes Vertilon's low-noise, interconnection method where 32 coaxial connections are made using a single plug.

The SDS232 is useful in PET and SPECT nuclear imaging as well as other applications such as high energy physics and radiation detection where multiple single element photomultiplier tubes or avalanche photodiodes are employed. New high gain solid-state devices like silicon photomultipliers (SPM) and multi-pixel photon counters (MPPC) are easily connected to the SDS232. Having performance approaching PMTs but in a single silicon package, these novel devices combine the small size, low voltage operation and robustness of APDs, with the high gain and stability of PMTs. The SDS232 is particularly well-suited for use with SensL's SPM devices and Hamamatsu's S10362-11 series of MPPCs.

Specifications	
Description	Specification
Maximum Charge Signal	2 nC with IQSP480/482, 500 pC with IQSP580/582
Input Noise Charge (RMS)	30 fC with IQSP480/482, 55 fC with IQSP580/582
Crosstalk	< -84 dB
Enclosure Width	9.843 in. (250 mm)
Enclosure Height	3.346 in. (85 mm)
Enclosure Depth	10.236 in. (260 mm)
Panel Connector Type	SMB Male Bulkhead Jack
Compatibility	Models: IQSP480, IQSP482, IQSP580, IQSP582

Front Panel View

Rear Panel View

Typical Setup

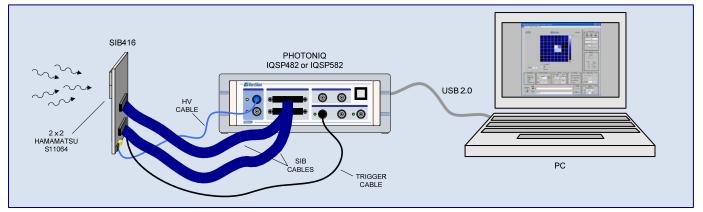
The photo shows an SDS232 connected to a PhotoniQ IQSP480 32-channel PMT / APD data acquisition system. Two channels of the SDS232 are connected to single element silicon photomultiplier (SPM) devices.

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third paties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon Corporation.

© 2008 Vertilon Corporation, ALL RIGHTS RESERVED

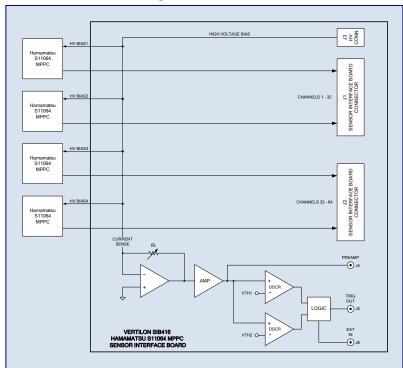
PS2706.2.5 Apr 2008

SIB416 Sensor Interface Board Hamamatsu S11064 MPPC


Product Sheet

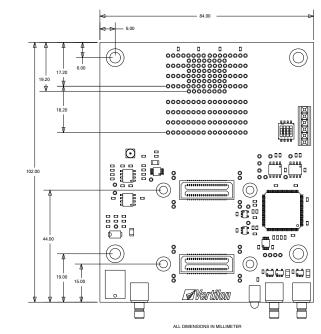
Description

The SIB416 sensor interface board allows up to four Hamamatsu S11064 multipixel photon counter (MPPC) devices to easily interface to a Vertilon PhotoniQ multichannel data acquisition system. The devices are inserted into receptacle pins where their cathode output signals are routed to connectors that connect the device outputs to the PhotoniQ. Bias to MPPC arrays is provided on a high voltage cable by the PhotoniQ where it can be enabled and configured through the PhotoniQ graphical user interface. A special current-sense output from the bias interface circuitry is sent to a variable gain preamplifier to represent the total charge signal measured by all four MPPC arrays. This signal is fed into a userprogrammable threshold leading edge discriminator that generates a trigger signal when an event exceeding a particular energy threshold is detected on any of the S11064 devices. The trigger output is typically connected to the trigger input on the PhotoniQ data acquisition system. Alternatively, the trigger output can be sent to other external hardware that could perform coincidence detection or precise time-to-digital conversion. The full functionality and operation of the SIB416 is conveniently controlled through the PhotoniQ's graphical user interface.


Typical Setup

Four Hamamatsu S11064 MPPCs in a 2 x 2 arrangement are attached to the SIB416 which is positioned in an optical assembly to detect incoming radiation. The 64 cathode outputs from the MPPC arrays are routed on the SIB416 to the SIB connectors that connect to a PhotoniQ IQSP482 or IQSP582 multichannel data acquisition system. The discriminator channel produces a trigger to the PhotoniQ whenever a radiation event is detected on any of the MPPCs. The energy level threshold for the radiation event is set by the user through the PhotoniQ graphical user interface. Charge signals from the 64 cathodes of the S11064 devices are acquired by the PhotoniQ for each trigger produced by the SIB416. Digitized output data from the PhotoniQ is sent through a USB 2.0 connection to a PC for display, logging, or real time processing. In the figure below, the PhotoniQ GUI is set to display an 8 x 8 image of the energy levels for each event captured.

SIB416 Sensor Interface Board Hamamatsu S11064 MPPC


Functional Block Diagram

Configuration Dialog Box

SIB416 Configuration	D		
Hamama	atsu S11064 MF	PPC Interface Board 🗕 🗕	
Prear	np Gain	 Low Medium High 	
Discri	iminator	Off On	
Discri	minator Threshold	10 😂 %	
Trigge	er Polarity	Positive Negative	
LED D	Disabled		
		OK Cance	el

Mechanical Data

Vertilon

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon Corporation.

© 2011 Vertilon Corporation, ALL RIGHTS RESERVED

PS2724.1.0 Oct 2011

Vertilon Corporation, 66 Tadmuck Road, Westford, MA 01886 / Tel: (978) 692-7070 / Fax: (978) 692-7010 / www.vertilon.com

Ordering Information

SIB416 directly compatible with Vertilon PhotoniQ IQSP480 / IQSP580 32 channel and IQSP482 / IQSP582 64 channel data acquisition systems. PhotoniQ systems sold separately. See User Manual for performance specifications.

SIB416 includes two SMB120 coaxial cables, SMB plug to BNC plug, 120 cm.

Sensor interface board (SIB) cables ordered separately. Specify part number SBCxxx, where "xxx" equals length in centimeter.

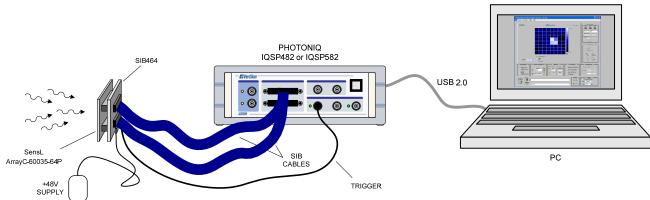
See SIB416 User Guide for complete specification.

See Hamamatsu S11064 datasheet for specific device information

SIB464 Sensor Interface Board SensL ArrayC-60035-64P

Description

The SIB464 sensor interface board allows for a SensL ArrayC-60035-64P 8 x 8 silicon photomultiplier (SiPM) array to easily interface to a Vertilon PhotoniQ multichannel data acquisition system. The SiPM is inserted into the bottom side of the printed circuit board where its anode output signals are routed directly to two sensor interface board (SIB) connectors. Each connector mates to a micro-coaxial cable assembly that connects 32


device outputs to the PhotoniQ. Bias to SiPM array is provided by an on-board adjustable high voltage bias supply. A special currentsense output on the supply is available that represents the AC

Product Sheet

charge signal produced by the SiPM array. This signal is fed into a user-programmable leading edge discriminator that generates a trigger signal when an event exceeding a preset energy threshold is detected on the ArrayC-60035-64P device. The trigger output is typically connected to the trigger input on the PhotoniQ data acquisition system where it is used to initiate the collection of the energy signals from the SiPM array connected to the DAQ system's inputs.

Typical Setup

The SensL ArrayC-60035-64P silicon photomultiplier is inserted into the SIB464 which is positioned in an optical assembly to detect incoming radiation. The 64 outputs from the SiPM array are routed on the SIB464 to the SIB connector that connects to a PhotoniQ IQSP482 or IQSP582 multichannel data acquisition system. The discriminator channel produces a trigger to the PhotoniQ whenever a radiation event is detected on the SiPM. The energy level threshold for the radiation event is set by the user through the PhotoniQ graphical user interface. Charge signals from the 64 anodes of the ArrayC-60035-64P device are acquired by the PhotoniQ for each trigger produced by the SIB464. Digitized output data from the PhotoniQ is sent through a USB 2.0 connection to a PC for display, logging, or real time processing. In the figure above, the PhotoniQ GUI is set to display an 8 x 8 image of the energy levels for each event captured.

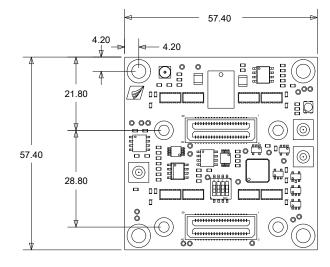
SIB464 Sensor Interface Board SensL ArrayC-60035-64P

BIAS ADJUS COMMON CATHODES HIGH VOLTAGE *** THRES CUI • COM J4 ANODE OUTPUTS EXT IN J5 ∟F1 OUT OUT F2 ; F63 MPERATUR SYSTEM ONTROLLE CONTROL STATUS OUTPUTS ۰ S34 P2 J1 SIB CONNECTOR \sim S35 Р3 Ŵ ÷ ÷ ÷ ÷ P31 ٨٨٨. S64 P32 \sim P33 ۸ÅÅ S2 P34 CTOR \sim P35 S3 w J2 SIB CONNE : ÷ P63 S31 w S32 P64 SENS VERTILON SIB464 ArrayC-60035-64P 8 X 8 SiPM ARRAY ArrayC-60035-64P SiPM SENSOR INTERFACE BOARD

Configuration Dialog Box

🕈 SIB464	4 Configuration	
	—— SensL ArrayB-60035-64P Interface Boar	d
	High Voltage Bias Enable	
	High Voltage Bias 25.000 V	
	Preamp Gain Med Low Med High High	
	Discriminator Off On	
	Discriminator Threshold 10 🛞 %	
	Trigger Polarity O Positive	
	LED Disabled	
	ок	Cancel

Functional Block Diagram


SIB464 directly compatible with Vertilon PhotoniQ IQSP482 / IQSP582 64 channel data acquisition systems. PhotoniQ systems sold separately. See User Manual for performance specifications.

SIB464 includes +48V power source for high voltage bias supply and two SMB120 coaxial cables, SMB plug to BNC plug, 120 cm.

Sensor interface board (SIB) cables ordered separately. Specify part number SBCxxx, where "xxx" equals length in centimeter.

See SIB464 User Guide for complete specification.

See SensL ArrayC-60035-64P datasheet for specific device information

ALL DIMENSIONS IN MILLIMETER

Vertilon

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon Corporation.

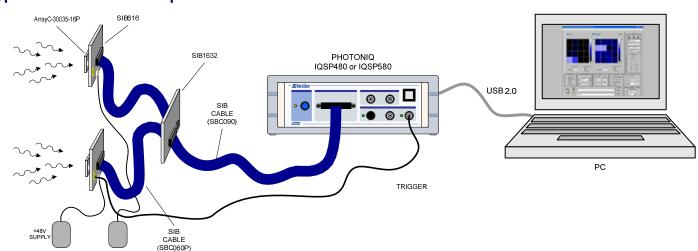
© 2014 Vertilon Corporation, ALL RIGHTS RESERVED

PS2731.1.1 Oct 2014

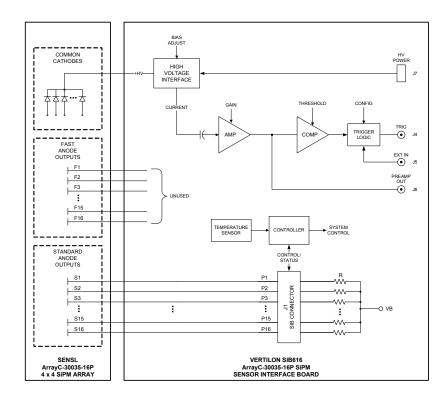
SIB616 Sensor Interface Board SensL ArrayC-30035-16P

Description

The SIB616 sensor interface board allows for a SensL ArrayC-30035-16P 4 x 4 silicon photomultiplier (SiPM) array to easily interface to a Vertilon PhotoniQ multichannel data acquisition system. The SiPM is inserted into the bottom side of the printed circuit board where its anode output signals are routed directly to a sensor interface board (SIB) connector. The SIB connector mates to a micro-coaxial cable assembly that connects the 16


Typical Dual Sensor Setup

device outputs to the PhotoniQ. Bias to SiPM array is provided by an on-board adjustable high voltage bias supply. A special current-sense output on the supply is available that represents the AC charge signal produced by the SiPM array. This signal



Product Sheet

is fed into a user-programmable leading edge discriminator that generates a trigger signal when an event exceeding a preset energy threshold is detected on the ArrayC-30035-16P device. The trigger output is typically connected to the trigger input on the PhotoniQ data acquisition system where it is used to initiate the collection of the energy signals from the SiPM array connected to the DAQ system's inputs.

The SensL ArrayC-30035-16P silicon photomultipliers are inserted into the SIB616s which are positioned in an optical assembly to detect incoming radiation. The SIB cables from each SIB616 connects to a Vertilon SIB1632 where the 16 outputs from each SiPM array are combined into one SIB cable (SBC090) that connects to a PhotoniQ IQSP480 or IQSP580 multichannel data acquisition system. The discriminator channel from one SIB616 produces a trigger to the PhotoniQ whenever a radiation event is detected on the SiPM. The energy level threshold for the radiation event is set by the user through the PhotoniQ graphical user interface. Charge signals from the 32 anodes from the two ArrayC-30035-16P devices are acquired by the PhotoniQ for each trigger produced by the SIB616. Digitized output data from the PhotoniQ is sent through a USB 2.0 connection to a PC for display, logging, or real time processing. In the figure above, the PhotoniQ GUI is set to display a dual 4 x 4 image of the energy levels for each event captured.

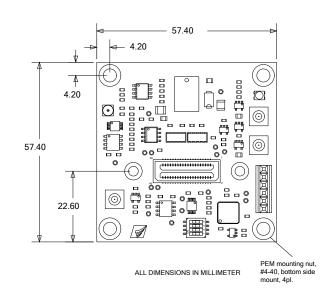
Ordering Information

SIB616 is directly compatible with Vertilon PhotoniQ IQSP480 / IQSP580 32 channel data acquisition systems. PhotoniQ systems sold separately. See User Manual for performance specifications.

SIB616 includes +48V power source for high voltage bias supply and two SMB120 coaxial cables, SMB plug to BNC plug, 120 cm.

Sensor interface board (SIB) cables ordered separately. Specify part number SBCxxx, where "xxx" equals length in centimeter.

See SIB616 User Guide for complete specification.


The Vertilon SIB1632 is an optional product that allows two SIB616 sensor interface boards to be used with one Vertilon 32 channel data acquisition system. See SIB1632 product sheet for details.

See SensL ArrayC-30035-16P datasheet for specific device information

Configuration Dialog Box

128 5	IB616 Configuration	
[SensL ArrayB-300XX-16F	PInterface Board
	High Voltage Bias Enable	
	High Voltage Bias	28.500 V
	Preamp Gain	Low Med Low Med High High
	Discriminator	O off ⊙ On
	Discriminator Threshold	10 🗢 %
	Trigger Polarity	Positive Negative
	LED Disabled	
l		OK Cancel

Mechanical Data

Vertilon

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon Corporation.

© 2014 Vertilon Corporation, ALL RIGHTS RESERVED

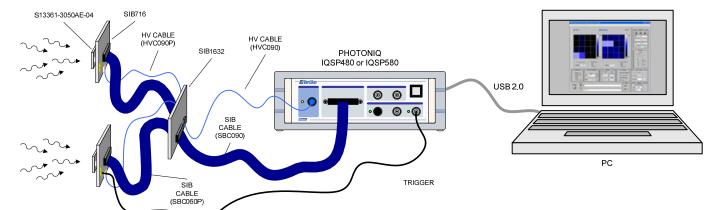
PS2732.1.1 Oct 2014

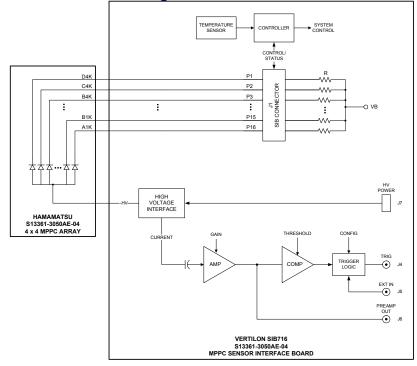
SIB716 Sensor Interface Board Hamamatsu S13361-3050AE-04

Product Sheet

Description

The SIB716 sensor interface board allows for a Hamamatsu S13361-3050AE-04 4 x 4 multipixel photon counter (MPPC) array to easily interface to a Vertilon PhotoniQ multichannel data acquisition system. The MPPC array is inserted into the bottom side of the printed circuit board where its cathode output signals are routed directly to a sensor interface board (SIB) connector. The SIB connector mates to a micro-coaxial cable assembly that connects the 16 device outputs to the PhotoniQ. Bias to MPPC array is provided on a high voltage cable by the




Typical Dual Sensor Setup

PhotoniQ where it can be enabled and configured through the PhotoniQ graphical user interface. A special current-sense tap from the bias interface circuitry is sent to a variable gain

preamplifier that outputs the total charge signal measured on all 16 elements in the MPPC array. This signal is fed into a user-programmable leading edge discriminator that generates a trigger signal when an event exceeding a preset energy threshold is detected on the S13361-3050AE-04 device. The trigger output is typically connected to the trigger input on the PhotoniQ data acquisition system where it is used to initiate the collection of the energy signals from the MPPC array connected to the DAQ system's inputs.

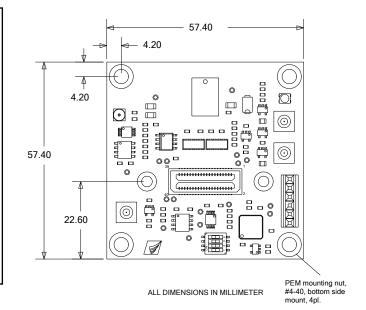
The Hamamatsu S13361-3050AE-04 multi-pixel photon counters are inserted into the SIB716s which are positioned in an optical assembly to detect incoming radiation. The SIB cables from each SIB716 connect to a Vertilon SIB1632 where the 16 outputs from each MPPC array are combined into one SIB cable (SBC090) that connects to a PhotoniQ IQSP480 or IQSP580 multichannel data acquisition system. The discriminator channel from one SIB716 produces a trigger to the PhotoniQ whenever a radiation event is detected on the MPPC. The energy level threshold for the radiation event is set by the user through the PhotoniQ graphical user interface. Charge signals from the 32 cathodes from the two S13361 devices are acquired by the PhotoniQ for each trigger produced by the SIB716. Digitized output data from the PhotoniQ is sent through a USB 2.0 connection to a PC for display, logging, or real time processing. In the figure above, the PhotoniQ GUI is set to display a dual 4 x 4 image of the energy levels for each event captured.

SIB716 is directly compatible with Vertilon PhotoniQ IQSP480 / IQSP580 32 channel data acquisition systems. PhotoniQ systems sold separately. See

SIB716 includes two SMB120 coaxial cables, SMB plug to BNC plug, 120 cm.

Sensor interface board (SIB) cables ordered separately. Specify part number

The Vertilon SIB1632 is an optional product that allows two SIB716 sensor


interface boards to be used with one Vertilon 32 channel data acquisition

See Hamamatsu S13361-3050-AE-04 datasheet for specific device

Configuration Dialog Box

SIB716 Configuration	
Hamamatsu S13361-3050-AS-04	MPPC Interface Board
Preamp Gain	 O Low Medium O High
Discriminator	O off ⊙ On
Discriminator Threshold	32 🔹 %
Trigger Polarity	Positive Negative
LED Disabled	
	OK Cancel

Mechanical Data

Vertilon

Ordering Information

User Manual for performance specifications.

SBCxxx, where "xxx" equals length in centimeter.

See SIB716 User Guide for complete specification.

system. See SIB1632 product sheet for details.

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon Corporation.

© 2016 Vertilon Corporation, ALL RIGHTS RESERVED

PS2733.1.2 Jul 2016

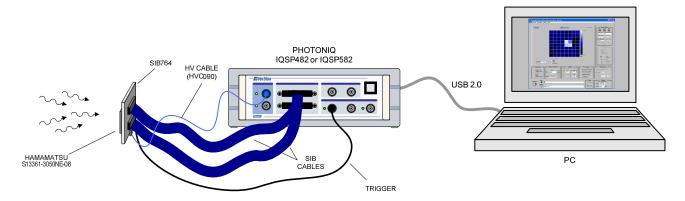
information

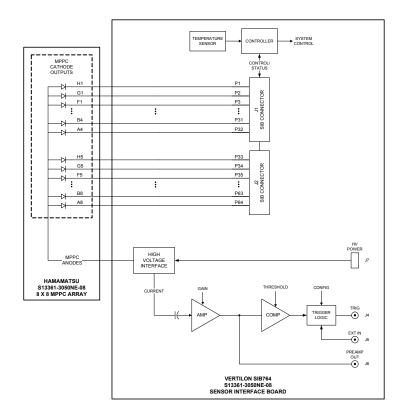
SIB764 Sensor Interface Board Hamamatsu S13361-3050NE-08

Product Sheet

Description

The SIB764 sensor interface board allows for a Hamamatsu S13361-3050NE-08 8 x 8 multipixel photon counter (MPPC) array to easily interface to a Vertilon PhotoniQ multichannel data acquisition system. The MPPC array is attached to the bottom side of the printed circuit board where its cathode output signals are routed directly to two sensor interface board (SIB) connectors. The SIB connectors mate to micro-coaxial cable assemblies that connect the 64 device outputs to the PhotoniQ. Bias to MPPC array is provided on a high voltage cable by the




PhotoniQ where it can be enabled and configured through the PhotoniQ graphical user interface. A special current-sense tap from the bias interface circuitry is sent to a variable gain

preamplifier that outputs the total charge signal measured on all 64 elements in the MPPC array. This signal is fed into a user-programmable leading edge discriminator that generates a trigger signal when an event exceeding a preset energy threshold is detected on the S13361-3050NE-08 device. The trigger output is typically connected to the trigger input on the PhotoniQ data acquisition system where it is used to initiate the collection of the energy signals from the MPPC array connected to the DAQ system's inputs.

Typical Radiation Detection Setup

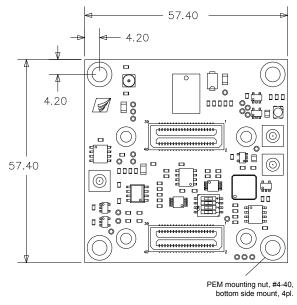
A typical radiation detection setup using a SIB764 is shown below. The Hamamatsu S13361-3050NE-08 multi-pixel photon counter array is attached to the SIB764 which is positioned in an optical assembly to detect incoming radiation. The 64 outputs from the MPPC array are routed on the SIB764 to the SIB connectors that connect to a PhotoniQ IQSP482 or IQSP582 multichannel data acquisition system. The discriminator channel on the SIB764 produces a trigger to the PhotoniQ whenever a radiation event is detected on any of the individual MPPCs in the array. The energy level threshold for the radiation event is set by the user through the PhotoniQ graphical user interface. Charge signals from the 64 cathodes of the S13361-3050NE-08 device are acquired by the PhotoniQ for each trigger produced by the SIB764. Digitized output data from the PhotoniQ GUI is set through a USB 2.0 connection to a PC for display, logging, or real time processing. In the figure below, the PhotoniQ GUI is set to display an 8 x 8 image of the energy levels for each event captured.

Ordering Information

SIB764 is directly compatible with Vertilon PhotoniQ IQSP482 / IQSP582 64 channel data acquisition systems. PhotoniQ systems sold separately. See User Manual for performance specifications.

SIB764 includes two SMB120 coaxial cables, SMB plug to BNC plug, 120 cm.

Sensor interface board (SIB) cables ordered separately. Specify part number SBCxxx, where "xxx" equals length in centimeter.


See SIB764 User Guide for complete specification.

See Hamamatsu S13361-3050NE-08 datasheet for specific device information

Configuration Dialog Box

SIB764 Configuration	<u></u>	-	\times
Hamamatsu S13361-3050NS-08	MPPC Interfa	ce Board	·
Preamp Gain	O Low Medium High		
Discriminator	O Off On		
Discriminator Threshold	15 🜩 %		
Trigger Polarity	Positive Negative		
LED Disabled			
	ОК	Cano	el

Mechanical Data

ALL DIMENSIONS IN MILLIMETER

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon Corporation.

© 2015 Vertilon Corporation, ALL RIGHTS RESERVED

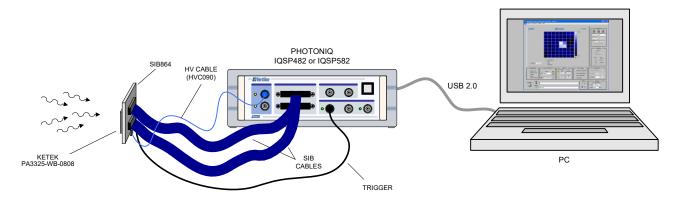
PS2736.1.2 Jul 2016

SIB864 Sensor Interface Board Ketek PA3325-WB-0808

Product Sheet

Description

The SIB864 sensor interface board allows for a Ketek PA3325-WB-0808 8 x 8 silicon photomultiplier (SIPM) array to easily interface to a Vertilon PhotoniQ multichannel data acquisition system. The SIPM array is plugged into the bottom side of the printed circuit board where its cathode output signals are routed directly to two sensor interface board (SIB) connectors. The SIB connectors mate to micro-coaxial cable assemblies that connect the 64 device outputs to the PhotoniQ. Bias to SIPM array is provided on a high voltage cable by the



PhotoniQ where it can be enabled and configured through the PhotoniQ graphical user interface. A special current-sense tap from the bias interface circuitry is sent to a variable gain


preamplifier that outputs the total charge signal measured on all 64 elements in the SIPM array. This signal is fed to a user-programmable leading edge discriminator that generates a trigger signal when an event exceeding a preset energy threshold is detected on any element of the PA3325-WB-0808 device. The trigger output is typically connected to the trigger input on the PhotoniQ data acquisition system where it is used to initiate the collection of the energy signals from the SIPM array connected to the DAQ system's inputs.

Typical Radiation Detection Setup

A typical radiation detection setup using a SIB864 is shown below. The Ketek PA3325-WB-0808 silicon photomultiplier array is attached to the SIB864 which is positioned in an optical assembly to detect incoming radiation. The 64 outputs from the SIPM array are routed on the SIB864 to the SIB connectors that connect to a PhotoniQ IQSP482 or IQSP582 multichannel data acquisition system. The discriminator channel on the SIB864 produces a trigger to the PhotoniQ whenever a radiation event is detected on any of the individual SIPMs in the array. The energy level threshold for the radiation event is set by the user through the PhotoniQ graphical user interface. Charge signals from the 64 cathodes of the PA3325-WB-0808 device are acquired by the PhotoniQ for each trigger produced by the SIB864. Digitized output data from the PhotoniQ is sent through a USB 2.0 connection to a PC for display, logging, or real time processing. In the figure below, the PhotoniQ GUI is set to display an 8 x 8 image of the energy levels for each event captured.

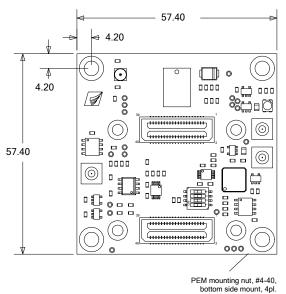
Vertilon Corporation, 66 Tadmuck Road, Westford, MA 01886 / Tel: (978) 692-7070

Ordering Information

SIB864 is directly compatible with Vertilon PhotoniQ IQSP482 / IQSP582 64 channel data acquisition systems. PhotoniQ systems sold separately. See User Manual for performance specifications.

SIB864 includes two SMB120 coaxial cables, SMB plug to BNC plug, 120 cm.

Sensor interface board (SIB) cables ordered separately. Specify part number SBCxxx, where "xxx" equals length in centimeter.


See SIB864 User Guide for complete specification.

See Ketek PA3325-WB-0808 datasheet for specific device information

Configuration Dialog Box

— 🗆 X
PM Interface Board
Low Madium High
O off (On
15 🔹 %
Positive Negative
OK Cancel

Mechanical Data

ALL DIMENSIONS IN MILLIMETER

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon Corporation.

© 2018 Vertilon Corporation, ALL RIGHTS RESERVED

PS2745.1.1 Feb 2018

Vertilon Corporation, 66 Tadmuck Road, Westford, MA 01886 / Tel: (978) 692-7070

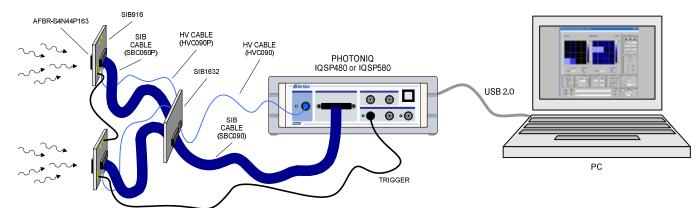
info@vertilon.com

SIB916 Sensor Interface Board for Broadcom AFBR-S4N44P163

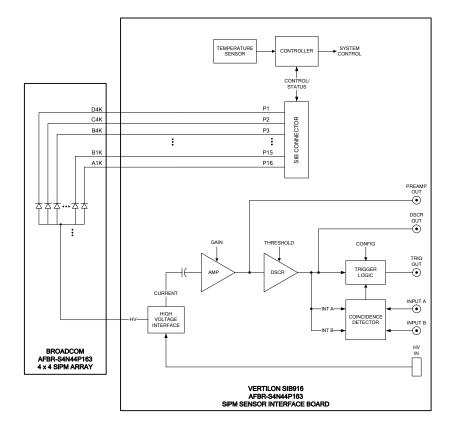
Product Sheet

Description

The SIB916 sensor interface board allows for the Broadcom AFBR-S4N44P163 4 x 4 silicon photomultiplier (SIPM) array to easily interface to a Vertilon PhotoniQ multichannel data acquisition system. The SIPM array is attached to the bottom side of the printed circuit board where its cathode output signals are routed directly to a sensor interface board (SIB) connector. The SIB connector mates to a micro-coaxial cable assembly that connects the 16 device outputs to the PhotoniQ. Bias to SIPM array is provided on a high voltage cable by the PhotoniQ where it can be enabled and configured through the PhotoniQ graphical user interface. A special current-sense tap from the bias



Typical Dual Sensor Setup


interface circuitry is sent to a variable gain preamplifier that outputs the total charge signal measured simultaneously on all 16 elements

in the SIPM array. This signal is fed to a user-programmable leading edge discriminator that generates a trigger signal when an event exceeding a preset energy threshold is detected on any element of the AFBR-S4N44P163 device. The trigger output is typically connected to the trigger input on the PhotoniQ data acquisition system where it is used to initiate the collection of the energy signals from the SIPM array connected to the DAQ system's inputs. Alternatively, the discriminator signal can be fed to the on-board coincidence detector and used with a second SIB916 to generate triggers only when two near-simultaneous events are detected.

The Broadcom AFBR-S4N44P163 4 x 4 SiPM arrays are mounted to the SIB916s which are positioned in an optical assembly to detect incoming radiation. The SIB cables from each SIB916 connect to a Vertilon SIB1632 where the 16 outputs from each SiPM array are combined into one SIB cable (SBC090) that connects to a PhotoniQ IQSP480 or IQSP580 multichannel data acquisition system. The discriminator output from one SIB916 is fed to the coincidence detector input on the other SIB916 so that a trigger to the PhotoniQ is produced whenever a near-simultaneous radiation event is detected on both SiPM arrays. The energy level threshold for the radiation event is set by the user through the PhotoniQ graphical user interface. Charge signals from the 32 cathodes from the two AFBR-S4N44P163 devices are acquired by the PhotoniQ for each coincidence trigger produced by the SIB916. Digitized output data from the PhotoniQ is sent through a USB 2.0 connection to a PC for display, logging, or real time processing. In the figure above, the PhotoniQ GUI is set to display a dual 4 x 4 image of the energy levels for each event captured.

Vertilon Corporation, 66 Tadmuck Road, Westford, MA 01886 / Tel: (978) 692-7070

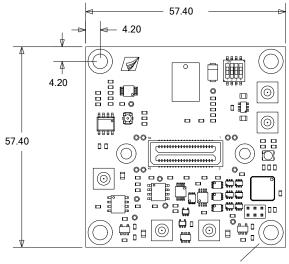
Ordering Information

SIB916 is directly compatible with Vertilon PhotoniQ IQSP480 / IQSP580 32 channel data acquisition systems. PhotoniQ systems sold separately. See User Manual for performance specifications.

SIB916 includes three SMB120 coaxial cables, SMB plug to BNC plug, 120 cm.

When using the coincidence detector with two SIB916, a coaxial cable consisting of an SMB plug on each end is required.

Sensor interface board (SIB) cables ordered separately. Specify part number SBCxxx, where "xxx" equals length in centimeter.


See SIB916 User Guide for complete specification.

See Broadcom AFBR-S4N44P163 datasheet for specific device information

Configuration Dialog Box

SIB916 Configuration	- 🗆 ×
Broadcom AFBR-S4	444P163 SiPM Interface Board
Preamp Gain	O Low Medium High
Discriminator	O Off ● On Threshold 10 🚖 %
Coincidence Detector	Off Isolated Internal Connection External Connection
Coincidence Window	 1 x Deta 2 x Deta 3 x Deta 4 x Deta 5 x Deta
Trigger Polarity	Positive Negative
LED Disabled	
	OK Cancel

Mechanical Data

PEM mounting nut, #4-40, bottom side mount, 4pl.

ALL DIMENSIONS IN MILLIMETER

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon Corporation.

© 2018 Vertilon Corporation, ALL RIGHTS RESERVED

PS2746.1.0 Dec 2018

Vertilon Corporation, 66 Tadmuck Road, Westford, MA 01886 / Tel: (978) 692-7070

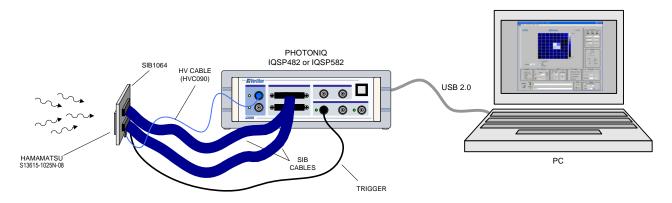
info@vertilon.com

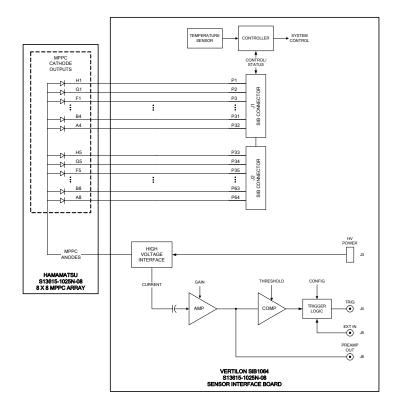
SIB1064 Sensor Interface Board Hamamatsu S13615-1025N-08

Product Sheet

Description

The SIB1064 sensor interface board allows for a Hamamatsu S13615-1025N-08 8 x 8 multipixel photon counter (MPPC) array to easily interface to a Vertilon PhotoniQ multichannel data acquisition system. The MPPC array is attached to the bottom side of the printed circuit board where its cathode output signals are routed directly to two sensor interface board (SIB) connectors. The SIB connectors mate to micro-coaxial cable assemblies that connect the 64 device outputs to the PhotoniQ. Bias to MPPC array is provided on a high voltage cable by the




PhotoniQ where it can be enabled and configured through the PhotoniQ graphical user interface. A special current-sense tap from the bias interface circuitry is sent to a variable gain

preamplifier that outputs the total charge signal measured on all 64 elements in the MPPC array. This signal is fed into a user-programmable leading edge discriminator that generates a trigger signal when an event exceeding a preset energy threshold is detected on the S13615-1025N-08 device. The trigger output is typically connected to the trigger input on the PhotoniQ data acquisition system where it is used to initiate the collection of the energy signals from the MPPC array connected to the DAQ system's inputs.

Typical Radiation Detection Setup

A typical radiation detection setup using a SIB1064 is shown below. The Hamamatsu S13615-1025N-08 multi-pixel photon counter array is attached to the SIB1064 which is positioned in an optical assembly to detect incoming radiation. The 64 outputs from the MPPC array are routed on the SIB1064 to the SIB connectors that connect via two high density cables to a PhotoniQ IQSP482 or IQSP582 multichannel data acquisition system. The discriminator channel on the SIB1064 produces a trigger to the PhotoniQ whenever a radiation event is detected on any of the individual MPPCs in the array. The energy level threshold for the radiation event is set by the user through the PhotoniQ graphical user interface. Charge signals from the 64 cathodes of the S13615-1025N-08 device are acquired by the PhotoniQ for each trigger produced by the SIB1064. Digitized output data from the PhotoniQ is sent through a USB 2.0 connection to a PC for display, logging, or real time processing. In the figure below, the PhotoniQ GUI is set to display an 8 x 8 image of the energy levels for each event captured.

Ordering Information

SIB1064 is directly compatible with Vertilon PhotoniQ IQSP482 / IQSP582 64 channel data acquisition systems. PhotoniQ systems sold separately. See User Manual for performance specifications.

SIB1064 includes two SMB120 coaxial cables, SMB plug to BNC plug, 120 cm.

Sensor interface board (SIB) cables ordered separately. Specify part number SBCxxx, where "xxx" equals length in centimeter.

See SIB1064 User Guide for complete specification.

See Hamamatsu S13615-1025N-08 datasheet for specific device information

Configuration Dialog Box

Smart SIB1064 Configuration	- 🗆 X
HAMAMATSU S13615-10xxN	I-08 SIPM INTERFACE BOARD
Preamp Gain	◯ Low ◉ Medium ◯ High
Discriminator	O Off ● On
Discriminator Threshold	<u>6</u> ♦ %
Trigger Polarity	 Positive Negative
LED Disabled	
	OK Cancel

57,40 4.20 <14.20 0000 0111 0 0 4..... ò ۵ 🛱 0000 -0000 57.40 49.00 ø 0000 000000000 ļ 0 8888 DODOC \odot 4..... o 0] 000 0] 00 PEM mounting nut, #4-40, bottom side mount, 4 pl.

Vertilon Corporation has made every attempt to ensure that the information in this document is accurate and complete. Vertilon assumes no liability for errors or for any incidental, consequential, indirect, or special damages including, without limitation, loss of use, loss or alteration of data, delays, lost profits or savings, arising from the use of this document or the products which it accompanies. Vertilon reserves the right to change its products without prior notice. No responsibility is assumed by Vertilon for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under the patent and proprietary information rights of Vertilon.

© 2020 Vertilon Corporation, ALL RIGHTS RESERVED

PS2748.1.0 Oct 2020

Vertilon Corporation, 66 Tadmuck Road, Westford, MA 01886 / Tel: (978) 692-7070 / Fax: (978) 692-7010 / www.vertilon.com

Mechanical Data