

Lasers and Laser Systems

Femtosecond Picosecond Nanosecond Tunable Wavelength High Intensity Laser Spectroscopy

Lasers and Laser Systems

About Company

Background

EKSPLA focuses on the design and manufacturing of advanced lasers & systems and employs more than 27 years' experience as well as a close partnership with the scientific community. 66 out of the 100 top universities use EKSPLA lasers. The company is leading in the global market for scientific picosecond lasers.

Clients like CERN, NASA, ELI, Max Planck Institutes, Cambridge University and Massachusetts Institute of Technology have chosen Ekspla as their partner. For scientist who needs unique instrument for research, we provide parameter tailored laser systems that enable customer to perform complex experiments. In-house design and manufacturing ensures operative design, manufacturing and customization of new products.

Highly stable and reliable EKSPLA lasers combined with our own subsidiaries in the US, UK and China as well as more than 20 approved representative offices with properly trained laser engineers worldwide, ensure short response time and fast laser service as well as maintenance.

History

EKSPLA was founded about 27 years ago by a small team of engineers united around the idea of making the most advanced lasers in the world. EKSPLA was independent company with little money, but lots of creativity, and a deep technical understanding of lasers and how useful they could be for research and industry. From the start, the whole team had a deep mutual respect and believed in and supported each other. The first laser was sold at its first launch event, at an international exhibition in Germany. Soon after, the innovation was noticed by partners in Japan, and supply of the systems to leading universities there has been started. The concept of continuous improvement was admired and embraced, so it has become one of the key principles that apply to everything is done.

Picosecond Lasers

Contents

Femtosecond Lasers		
FemtoLux 3 series Microjoule Class Femtosecond Industrial Lasers	7	
UltraFlux FT300 series Tunable Wavelength Femtosecond Laser Systems	98	
UltraFlux FF/FT 5000 series High Energy Tunable Wavelength Femtosecond Laser Systems	101	
Picosecond Lasers	13	
PL2210 series Diode Pumped Picosecond kHz Pulsed Nd:YAG Lasers	14	
PL2230 series Diode Pumped High Energy Picosecond Nd:YAG Lasers	17	
PL2250 series Flash-Lamp Pumped Picosecond Nd:YAG Lasers	21	
SBS Compressed Picosecond DPSS Nd:YAG Lasers	24	
Picosecond Nd:YLF Lasers Custom product, tailored for specific applications	27	
Picosecond Tunable Systems	31	
PGx01 series High Energy Broadly Tunable OPA	32	
PGx03 series		

PGx03 series KHz Repetition Rate Broadly Tunable OPA	36
PGx11 series Transform Limited Broadly Tunable Picosecond OPA	39
PT277 series Single Housing NIR-IR Range Tunable Picosecond Laser	44

Nanosecond Lasers

NL200 series Compact Q-switched DPSS Lasers	48
NL210 series High Energy kHz Pulsed Cavity Dumped DPSS Nd:YAG Lasers	51
NL230 series High Energy Q-switched DPSS Nd:YAG Lasers	54
NL300 series	
Compact Flash-lamp Pumped Q-switched Nd:YAG Lasers	57
Harmonic generators	
For NL300 Series Lasers	61
Attenuators For NL300 Series Lasers	63
NL740 series	
Ultra-stable Nanosecond Laser	64

47

Tunable Wavelength Lasers	67
NT230 series	
High Energy Broadly Tunable DPSS Lasers	68
NT242 series	
Broadly Tunable kHz Pulsed DPSS Lasers	72
NT252 series	
Tunable Wavelength UV-NIR Range DPSS Lasers	76
NT270 series	-
Tunable Wavelength NIR-IR Range DPSS Lasers	79
NT342 series	
High Energy Broadly Tunable Lasers	82
NT350 series	
High Energy NIR Range Tunable Lasers	86
NT370 series	
High Energy IR Range Tunable Lasers	89
PhotoSonus	
High Energy, Mobile, Tunable Wavelength Laser Source for Photoacoustic Imaging	92
PhotoSonus X	0.
High Output Power DPSS Tunable Laser for Photoacoustic Imaging	92

High Intensity Laser Systems97

UltraFlux FT300 series Tunable Wavelength Femtosecond Laser Systems	98
UltraFlux FF/FT 5000 series High Energy Tunable Wavelength Femtosecond Laser Systems	101
APL2100 series High Energy Picosecond Amplifiers	104

Picosecond Lasers

Femtosecond Lasers

APL2200 series			
High Energy kHz Repetition	Rato	Dicosecond	٨

High Energy kHz Repetition Rate Picosecond Amplifiers	107
APL4206 series High Energy Picosecond Amplifiers	110
NL120 series SLM Q-switched Nd:YAG Lasers	112
NL310 series High Energy Q-switched Nd:YAG Lasers	115
NL940 series High Energy Temporaly Shaped Nanosecond Nd:YAG Lasers	118
ANL series High Energy and High Repetition Rate DPSS Nanosecond Lasers	121
Nd:Glass systems Nanosecond High Energy Laser Systems	123
NL941 series High Energy Temporaly Shaped DPSS Nanosecond Lasers	125

Other Ekspla Products 128

SFG spectrometer	
Picosecond Vibrational Sum Frequency Generation Spectrometer	129

Applications Examples	136
Z-SCAN Nonlinear Materials Optical Parameters Measurement	137
LIDAR Light Detection and Ranging	138
LIBS Laser Induced Breakdown Spectroscopy	139
SFG Spectroscopy Sum Frequency Generation Vibrational Spectroscopy	140
SHG Spectroscopy Second Harmonic Generation Spectroscopy	141
OPCPA Seeding Seeding of Femtosecond Laser Systems	141
Photoacoustic Imaging High Contrast in Vivo Imaging Technique	142
Ultra-High Intensity Building of Ultra High Intensity Laser Systems	142

*****EKSPLA

FEMTOSECOND LASERS

FemtoLux • UltraFlux (page 98)

FemtoLux 3

FemtoLux 3 is a modern femtosecond fiber laser aimed for both R&D use and industrial integration. Tunable pulse duration in a range of 300 fs -5 ps, adjustable pulse repetition rate up to 5 MHz and adjustable pulse energy up to 3 µJ allows optimization of laser parameters for the desired application. These include marking and volume structuring of transparent materials, photopolymerization, biological imaging, nonlinear microscopy and many others. To expand the scope of applications even further this laser can be equipped with a second harmonics module.

With burst mode enabled, FemtoLux 3 can generate bursts of pulses with energy above 10 μ J with instant burst shape control which can significantly improve the efficiency of some processes.

Having a rigid, compact, passive air-cooled laser head and the possibility to control the laser from a wireless tablet, FemtoLux 3 can be integrated with different equipment, be it laser equipment for material micro-processing, microscopy or any other research equipment.

Microjoule Class Femtosecond Industrial Lasers

FEATURES

- ► 300 fs ... 5 ps tunable pulse duration
- Output power 3 W at 1030 nm or 1.5 W at 515 nm
- Up to 3 μJ/pulse and
 10 μJ/burst (at 1030 nm)
- Up to 1.5 µJ/pulse and 5 µJ/burst (at 515 nm)
- Excellent beam quality M² < 1.2</p>
- Versatile laser control and syncronisation capabilities
- ▶ Up to 5 MHz pulse repetition rate
- Smart triggering for synchronous operation with polygon scanner and PSO
- Burst shape control
- Passive cooling of the laser head
- 24/7 operation

APPLICATIONS

- Inner volume marking of transparent materials
- ▶ Marking and structuring
- Micromachining of brittle materials

XEKSPLA

- Photopolymerization
- Ophthalmologic surgery
- Biological Imaging
- Pumping of femtosecond OPO/OPA
- Microscopy

Picosecond Lasers

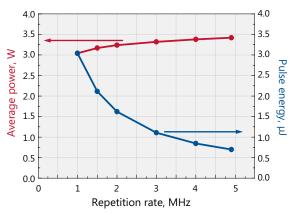
High Intensity Lasers

FemtoLux 3

SPECIFICATIONS ¹⁾

Model	FemtoLux 3		
MAIN SPECIFICATIONS			
Central wavelength			
Fundamental	1030 ± 2 nm		
With second harmonic option	515 ± 1 nm		
-	••• = ••••		
Minimal pulse duration (FWHM) at 1030 nm	< 300 fs (typical ~230 fs)		
Pulse duration tuning range	300 fs – 5 ps		
Maximal average output power ²)	214		
at 1030 nm	> 3 W		
at 515 nm	> 1.5 W		
Power long term stability (Std. dev.) ³⁾	≤ 0.5 %		
Maximal pulse energy ²⁾			
at 1030 nm	> 3 µJ		
at 515 nm	> 1.5 µJ		
Pulse energy stability (Std. dev.) 4)	< 2 %		
Laser pulse repetition rate (PRR _L) range ⁵)	1 – 5 MHz		
Pulse repetition rate after pulse picker	PRR = PRR _L / N, N=1, 2, 3, , min 10 k	(Hz	
External pulse gating	via TTL input		
Burst mode 6)	1 – 10 pulses		
Max burst energy			
at 1030 nm	> 10 µJ		
at 515 nm	> 5 µJ		
Burst shape control	via analog input		
Power attenuation	0 – 100 % from remote control application or via	analog input	
Polarization orientation	linear, vertical		
Polarization extinction ratio	>1000:1		
M ²	< 1.2		
Beam divergence (full angle)	<1.0 mrad		
Beam circularity (far field)	> 0.85		
Beam pointing stability (pk-to-pk) 7)	< 30 µrad		
Beam diameter (1/e ²) at 20 cm distance from laser	aperture		
at 1030 nm	2.0 ± 0.3 mm		
at 515 nm	1.0 ± 0.2 mm		
OPERATING REQUIREMENTS			
Mains requirements	100 240 V AC, single phase 47 63	Hz	
Maximal power consumption	< 500 W		
Operating ambient temperature	15 – 30 °C		
Relative humidity	10 – 80 % (non-condensing)		
Air contamination level	ISO 9 (room air) or better		
PHYSICAL CHARACTERISTICS			
Cooling of the laser head	air, passive		
Laser head size (L×W×H)			
at 1030 ± 2 nm	464 × 363 × 129 mm		
at 515 ± 1 nm	620 × 363 × 129 mm		
Power supply unit size (L×W×H)	449 \times 436 \times 140 mm (stand-alone) or 483 \times 436 \times 140 mm (19" rack mountable		
Umbilical length	5 m		
CLASSIFICATION			
Classification according EN60825-1	CLASS 4 laser product		
-	•		
¹⁰ Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture.	 ⁴⁾ At 1 MHz PRR_L under constant environmental conditions. ⁵⁾ When pulse picker is set to transmit every pulse. ⁶⁾ Pulse separation inside the burst is about 20 ns. ⁷⁾ Beam pointing stability is evaluated as a movement of the 	VISILE AND/CR INVISILE LASER PADATA	
See typical power and energy curves for other pulse	beam centroid in the focal plane of a focusing element.	REFLECTED OR SAME EARDSTREED FOR MAKE REFLECTED OR SCATTERED RADIATION Yb:Fiber 1030, 515 nm Max. 10 µJ, power 3 W, pulse 300 fs	

See typical power and energy curves for other pulse repetition rates at Fig 1., Fig 2. and Fig 4.

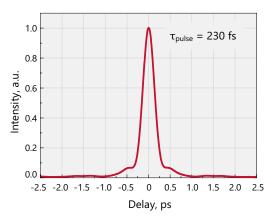
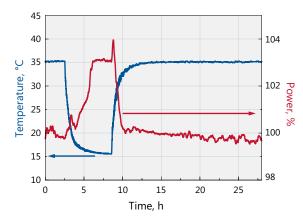
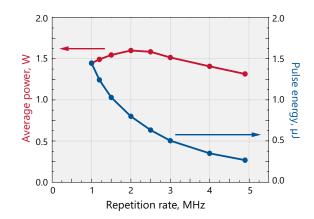

 $^{\scriptscriptstyle 3)}$ At 1 MHz PRR $_{\! L}$ during 24 h of operation after warm-up under constant environmental conditions.

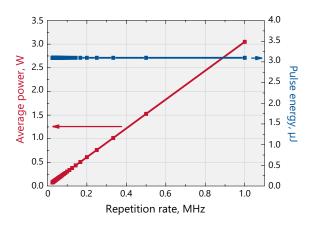
***EKSPLA**

Note: It is recommended to use clean air generator with FemtoLux 3-GR in order to ensure it's performance stability.

PERFORMANCE

Fig 1. Typical dependence of output power and pulse energy of FemtoLux 3 laser **at 1030 nm** when changing internal repetition rate of the laser


Fig 3. Typical FemtoLux 3 laser (at 1030 nm) output pulse autocorrelation function at 3 μ pulse energy. Calculated pulse duration is 230 fs

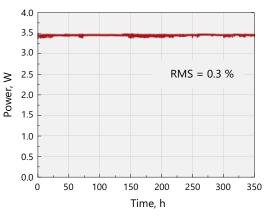

Fig 5. Average output power dependance on ambient temperature **at 1030 nm**

Fig 2. Typical dependence of output power and pulse energy of FemtoLux 3-GR laser **at 515 nm** on pulse repetition rate

Fig 4. Typical dependence of output power and pulse energy of FemtoLux 3 laser **at 1030 nm** when repetition rate is reduced by pulse picker. Internal repetition rate of the laser in this case is 1 MHz

Fig 6. Typical long term average output power stability of FemtoLux 3 laser **at 1030 nm** under constant environmental conditions

*** EKSPLA**

FemtoLux 3

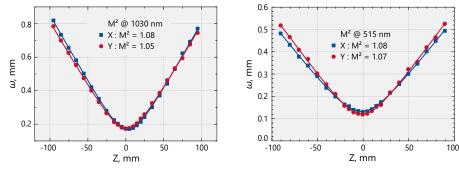


Fig 7. Typical M² measurement of FemtoLux 3 laser

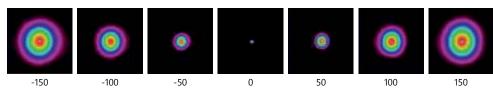


Fig 8. Typical beam profiles along propagation axis of FemtoLux 3 series laser

REMOTE CONTROL APPLICATION

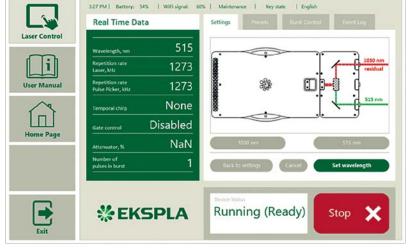


Fig 9. Example of FemtoLux 3 remote control application

Picosecond Lasers

FemtoLux 3

112 129

304.8

300

DRAWINGS

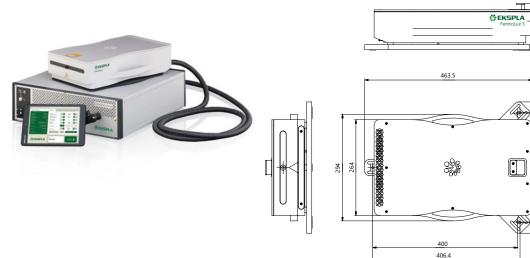


Fig 11. Outline drawings of FemtoLux 3 laser head

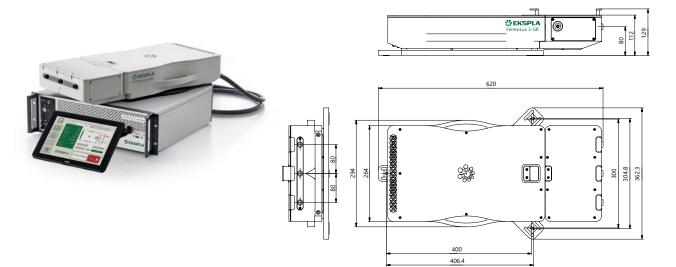
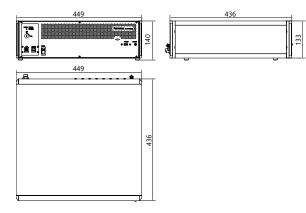
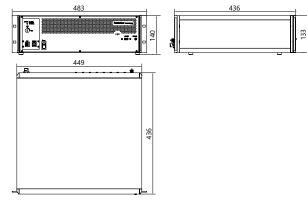




Fig 12. Outline drawings of FemtoLux 3-GR laser head with second harmonic option

Fig 13. Outline drawings of FemtoLux 3 stand-alone control unit

Fig 14. Outline drawings of FemtoLux 3 19" rack mountable control unit

to ensure high pulse energies with longer periods between maintenance

High Intensity Lasers

Picosecond Lasers

The first EKSPLA picosecond laser has been sold on its first launch event in exhibition in Germany more than 20 years ago. Due to their excellent stability and high output parameters EKSPLA scientific picosecond lasers established their name as "Gold Standard" among scientific picosecond lasers.

Innovative design of new generation of picosecond mode-locked lasers feature diode-pumping-only technology, thus reducing maintenance costs and improving output parameters.

Second, third, fourth and fifth (on some versions) harmonic options combined with various accessories, advanced electronics (for streak camera synchronization, phase-locked loop, synchronization of fs laser) and customization possibilities make these lasers well suited for many scientific applications, including optical parametric generator pumping, time-resolved spectroscopy, nonlinear spectroscopy, remote sensing, metrology...

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands) or LAN (REST API) interfaces or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

SHORT SELECTION GUIDE

For Your convenience, table contains all available options and highest parameter values. Not all output specifications are available at the same time simultaneously. Please refer to the catalog page for exact specifications and available options.

Model	Max pulse energy at fundamental wavelength	Repetition rate, up to	Pumping	Pulse duration	Special feature	Page
PL2210	5 mJ at 1064 nm	1000 Hz	Diode pumped solid state	28±3 ps	kHz repetition rate	14
PL2230	40 mJ at 1064 nm	100 Hz	Diode pumped solid state	28 ± 3 ps	High pulse energy employing DPSS only technology	17
PL2250	100 mJ	20 Hz	Hybrid (DPSS master oscillator and flash-lamp pumped power amplifier)	30±3 ps	High pulse energy	21
SL230	500 mJ at 1064 nm	50 Hz	Diode-pumped Q-switched SLM master oscillator	120 ± 15 ps	Employs Stimulated Brillouin Scattering (SBS compression) technology	24
Picosecond Nd:YLF laser	40 or 70 mJ	5 or 10 Hz	Flash-lamp pumped	10 ± 2 ps	Custom product, tailored for specific applications	27

XEKSPLA

PL2210 • PL2230 • PL2250 • SL230

PL2210 SERIES

PL2210 series diode-pumped, air-cooled, mode-locked Nd:YAG lasers provide picosecond pulses at a kilohertz pulse repetition rate.

Short pulse duration, excellent pulse-to-pulse stability, superior beam quality makes PL2210 series diode pumped picosecond lasers well suited for many applications, including material processing, time-resolved spectroscopy, optical parametric generator pumping, and other tasks.

Flexible design

PL2210 series lasers offer a number of optional items that extend the capabilities of the laser. A pulse picker option allows control of the pulse repetition rate of the laser and operation in single-shot mode.

The repetition rate and timing of pulses can be locked to an external RF source (with –PLL option) or other ultrafast laser system (with –FS option). The laser provides a triggering pulse for synchronization of the customer's equipment. A low jitter SYNC OUT pulse has a lead up to 500 ns that can be adjusted in ~0.25 ns steps from a PC. Up to 400 µs lead of triggering pulse is available as a PRETRIG standard feature that is designed to provide precise, very low jitter trigger pulses for a streak Diode Pumped Picosecond kHz Pulsed Nd:YAG Lasers

FEATURES

- ► High pulse energy at **kHz rates**
- Diode pumped solid state design
- Air cooled external water supply is not required
- Turn-key operation
- Low maintenance costs
- Optional streak camera triggering pulse with <10 ps rms jitter
- Remote control pad
- ► PC control via USB with supplied LabVIEW[™] drivers
- Optional temperature stabilized second, third and fourth harmonic generators

APPLICATIONS

- Time resolved fluorescence, pump-probe spectroscopy
- ▶ OPG/OPA/OPO pumping
- Remote Laser Sensing
- Other spectroscopic and nonlinear optics applications

Custom-built models with higher

pulse energy are available on request.

Available models

Model	Features
PL2210A-1k	Up to 900 μ , 28 ps pulses at an up to 1 kHz repetition rate
PL2211	Up to 2.5 mJ energy at a 1 kHz repetition rate at 28 ps pulses
PL2211A	Up to 5 mJ energy at a 1 kHz repetition rate at 28 ps pulses

camera.

Custom products, tailored for specific applications ¹⁾

Model	Features
PL2210A-2k	Up to 400 $\mu\text{J},$ 28 ps pulses at an up to 2 kHz repetition rate
PL2210B	Up to 2.5 mJ energy at a 1 kHz repetition rate at 80 ps pulses
PL2210B-TR	Model, in addition to a 1 kHz pulse train, has an output of 88 MHz pulse train that can be used for pumping synchronously pumped OPOs

¹⁾ Inquire for other specifications.

High Intensity Lasers

Built-in harmonic generators

Motorised switching of wavelength for PL2210A. Nonlinear crystals mounted in temperature stabilized heaters are used for second, third and fourth high spectral purity harmonic generation.

Simple and convenient laser control

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands) or LAN (REST API) interfaces or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

SPECIFICATIONS ¹⁾

Model	PL2210A	PL2211	PL2211A	
Output energy				
at 1064 nm	0.9 mJ	2.5 mJ	5 mJ	
at 532 nm ²⁾	0.45 mJ	1.3 mJ	2.5 mJ	
at 355 nm ³⁾	0.35 mJ	0.8 mJ	1.6 mJ	
at 266 nm 4)	0.16 mJ	1 mJ		
Pulse energy stability (StdDev) 5)				
at 1064 nm	0.5 %			
at 532 nm		0.8 %		
at 355 nm		1 %		
at 266 nm		2 %		
Pulse duration (FWHM) ⁶⁾		28 ps ± 10 %		
Pulse repetition rate		1 kHz		
Triggering mode		internal/external		
Typical TRIG1 OUT pulse delay ⁸⁾		-500 50 ns		
TRIG1 OUT pulse jitter		< 0.1 ns rms		
Spatial mode ⁹⁾		Close to Gaussian		
Beam divergence ¹⁰⁾		<1 mrad		
Beam diameter ¹¹⁾	1.7 ± 0.3 mm			
Beam pointing stability ¹²⁾	< 30 µrad			
Pre-pulse contrast		> 200 : 1		
Polarization		linear, >100 : 1		
PHYSICAL CHARACTERISTICS				
Laser head size (W \times L \times H) ¹³⁾		456 × 1031 × 249 mm		
	365 × 392 × 290 mm		nm (19" standard, MR-9)	
OPERATING REQUIREMENTS Water service		and an environd of a second		
		not required, air cooled		
Relative humidity		20−80 % (non condensing) 22 ± 2 °C		
Ambient temperature Power requirements	100	22 ± 2 C)–240 V AC, single phase 50/60	ר ⊔ ~	
•		5 .		
Power consumption ¹⁴) Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of	provided with PRETR	al pulse. <10 ps rms jitter is IG standard feature.	5 kW	
typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without	t we 0.25 ns steps in specified range. (ations vithout vitro) Near field Gaussian fit is >90%.			
options. For PL2210 series laser with –SH, -SH/TH, -SH/FH or -SH/TH/FH option. Outputs are not simultaneous.	values measured at t	-plane full angle divergence he 1/e² level at 1064 nm. easured at 1064 nm at the 1/		
For PL2210 series laser with –TH, -SH/TH or -SH/TH/FH option. Outputs are not simultaneous.	e ² point. ¹²⁾ Beam pointing stabil	ity is evaluated from		
For PL2210 series laser with -SH/FH or		centroid position in the far field.		

- ⁴⁾ For PL2210 series laser with -SH/FH or -SH/TH/FH option. Outputs are not simultaneous.
- ⁵⁾ Averaged from pulses, emitted during 30 sec time interval.
- Optional 80 or 22 ps ± 10% duration. Pulse energy specifications may differ from indicated here.

¹³⁾ 456×1233×249 mm (W×L×H) laser head size might be required for some optional configurations.

¹⁴⁾ At 1 kHz pulse repetition rate.

Femtosecond Lasers

Picosecond Lasers

Picosecond Tunable Systems

Nanosecond Lasers

PRETRIG FEATURE

▶ PRETRIG provides low jitter pulse for streak camera triggering with lead/delay in -400...600 µs range and <10 ps rms jitter.

OPTIONS

- ▶ Option P80 provides 80 ps ± 10 % output pulse duration. Inquire for pulse energy specifications.
- ▶ Option P20 provides 22 ps ± 10 % output pulse duration. Inquire for pulse energy specifications.
- ▶ Option PC allows reduction of the pulse repetition rate of the PL2210 series laser by integer numbers. Single shot mode is also possible. In addition, the -PC option reduces the low-intensity quasi-CW background that is present at laser output at 1064 nm wavelength. Please note that the output of fundamental wavelength and harmonic will be reduced by approx. 20% with installation of the -PC option.

BEAM PROFILE

OUTLINE DRAWINGS

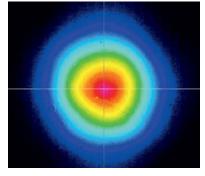
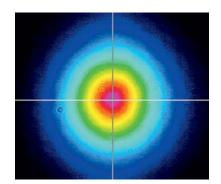



Fig 1. Typical PL2210 series laser near field beam profile at 1064 nm except PL2211, PL2211A

PL2210 SERIES

Fig 2. Typical PL2211, PL2211A laser near field beam profile at 1064 nm

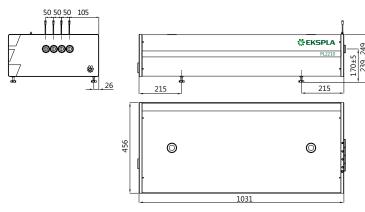


Fig 3. Dimensions of PL2210 series laser head

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

PL2210A-SH/TH/FH-P20

Model Pulse energy level, A for 0.9 mJ output

Harmonic generator
options:
$SH \rightarrow$ second harmonic
TH \rightarrow third harmonic
FH \rightarrow fourth harmonic

Other pptions: P80

PC

PLL

TR

- \rightarrow 80 ps pulse duration option P20
 - \rightarrow 20 ps pulse duration option
 - → pulse picker option pulse repetition rate locking
 - option auxiliary quasi-CW train
 - output option

Picosecond Lasers

PL2210 • PL2230 • PL2250 • SL230

PL2230 SERIES

Innovative design

The heart of the system is a diode pumped solid state (DPSS) master oscillator placed in a sealed monolithic block, producing high repetition rate pulse trains (88 MHz) with a low single pulse energy of several nJ. Diode pumped amplifiers are used for amplification of the pulse to 30 mJ or up to 40 mJ output. The high-gain regenerative amplifier has an amplification factor in the proximity of 10⁶. After the regenerative amplifier, the pulse is directed to a multipass power amplifier that is optimized for efficient stored energy extraction from the Nd:YAG rod, while maintaining a near Gaussian beam profile and low wavefront distortion. The output pulse energy can be adjusted in approximately 1% steps, while pulse-to-pulse energy stability remains at less than 0.5% rms at 1064 nm.

Angle-tuned KD*P and KDP crystals mounted in thermostabilised ovens are used for second, third, and fourth harmonic generation. Harmonic separators ensure the high spectral purity of each harmonic guided to different output ports. Built-in energy monitors continuously monitor output pulse energy. Data from the energy monitor can be seen on the remote keypad or on a PC monitor. The laser provides triggering pulses for the synchronisation of your equipment. The lead of the triggering pulse can be up to 500 ns and is user adjustable in ~0.25 ns steps from a personal computer. Up to 1000 µs lead of triggering pulse is available as a pretrigger feature. Precise pulse energy control, excellent short-term and long-term stability, and a 50 Hz repetition rate makes PL2230 series lasers an excellent choice for many demanding scientific applications.

Simple and convenient laser control

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands) or LAN (REST API) interfaces or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

Diode Pumped High Energy Picosecond Nd:YAG Lasers

FEATURES

- Diode pumped power amplifier producing up to 40 mJ per pulse at 1064 nm
- Beam profile improvement using advanced beam shaping system
- Hermetically sealed DPSS master oscillator
- Diode pumped regenerative amplifier
- Air-cooled
- <30 ps pulse duration</p>
- Excellent pulse duration stability
- ▶ Up to **100 Hz** repetition rate
- Streak camera triggering pulse with <10 ps jitter
- Excellent beam pointing stability
- Thermo stabilized second, third or fourth harmonic generator options
- ► PC control trough USB and with supplied LabView[™] drivers
- Remote control via keypad

APPLICATIONS

- Time resolved spectroscopy
- ► SFG/SHG spectroscopy
- Nonlinear spectroscopy
- ▶ OPG pumping
- Remote laser sensing
- ▶ Satellite ranging
- Other spectroscopic and nonlinear optics applications

XEKSPLA

Picosecond Lasers

Nanosecond Lasers

High Intensity Lasers

PL2230 SERIES

SPECIFICATIONS ¹⁾

Model	PL2230-100	PL2231-100	PL2231-50	PL2231A-50	
Pulse energy ²⁾					
at 1064 nm	3 mJ	12 mJ	30 mJ	40 mJ	
at 532 nm ³⁾	1.3 mJ	5 mJ	13 mJ	18 mJ	
at 355 nm 4)	0.9 mJ	3.5 mJ	9 mJ	13 mJ	
at 266 nm ⁵⁾	0.3 mJ	1.2 mJ	3 mJ	5 mJ	
at 213 nm ⁶⁾		inquire			
Pulse energy stability (StdDev) 7)					
at 1064 nm	< 0.2 %		< 0.5 %		
at 532 nm	< 0.4 %		< 0.8 %		
at 355 nm	< 0.5 %		< 1.1 %		
at 266 nm	< 0.5 %		< 1.2 %		
at 213 nm	< 1.5 %		< 1.5 %		
Pulse duration (FWHM) ⁸⁾		28 ps ± 1			
Pulse duration stability ⁹		±1%			
Power drift ¹⁰⁾		± 1 %			
Pulse repetition rate	0 – 100 Hz	100 Hz	50 Hz	50 Hz	
Polarization	0 - 100 112	vertical, >99 % a		30 HZ	
	> 200	,)	
Pre-pulse contrast	> 200	close to Gaussian in n	espect to residual pulses)	
Beam profile ¹¹⁾ Beam divergence ¹²⁾	1E mmd	close to Gaussian in h	ear and far fields < 0.7 mrad		
Beam divergence ¹²⁷ Beam propagation ratio M ²	< 1.5 mrad				
	< 1.3		< 2.5		
Beam pointing stability ¹³⁾	≤ 10 µrad StdDev		≤ 20 µrad StdDev		
ypical beam diameter ¹⁴⁾	~ 2 mm	~ 4 r	nm	~ 5 mm	
Dptical pulse jitter					
Internal triggering regime ¹⁵⁾) ps (StdDev) with respe			
External triggering regime ¹⁶	~	3 ns (StdDev) with respe			
RIG1 OUT pulse delay ¹⁷⁾		-500 50			
ypical warm-up time	5 min		15 min		
PHYSICAL CHARACTERISTICS					
aser head size (W × L × H)		456×1031×249	9 ± 3 mm		
Electrical cabinet size (W \times L \times H)	12 V DC power adapter, 85×170×41 ± 3 mm		471×391×147 ± 3 mm		
Jmbilical length		2.5 m			
-					
OPERATING REQUIREMENTS		L 10 1 1			
Cooling ¹⁸⁾		built-in ch			
Room temperature		22±2 °			
Relative humidity		20 – 80 % (non-c			
Power requirements	110-240 V AC, 50/60 Hz	Single pha	ase, 110–240 V AC, 5 A, 5	50/60 Hz	
Power consumption	< 0.15 kVA		< 1.0 kVA		
Due to continuous improvement, all specifications are subject to change wit notice. Parameters marked typical are r specifications. They are indications of ty performance and will vary with each ur manufacture. Unless stated otherwise, i specifications are measured at 1064 nm basic system without options. Specificat models PL2231A, B and C are prelimina should be confirmed against quotation purchase order.	hout time interval. hout interval. intor interval. FWHM. Inquire for 20 – 90 ps range. P may differ from ind and for intor interval. Measured over 1 ho temperature variati intry and interval.	ses, emitted during 30 sec optional pulse durations in fulse energy specifications icated here. Dur period when ambient on is less than ± 1 °C. ours period after 20 min bient temperature variation		VISING ANOVOR INVISION LASER R VISING ANOVOR INVISION LASER R REFLECTE DORS AND REPORTED TO REFLECTE DORS AND REPORTED REFLECTE DORS AND REPORTED REFLECTE DORS AND REPORTED REFLECTE DORS AND REPORTED REFLECTED REFLECTION OF DISCOMENTION REFLECTED REFLECTION OF DISCOMENTION REFLECTED REFLECTION OF DISCOMENTION REFLECTED REFLECTION OF DISCOMENTION REFLECTION OF DISCOMENTION OF DISCOMENTION REFLECTION OF DISCOMENTION REFLECTION REFLECTION OF DISCOMENTION REFLECTION OF DISCOMENTION	
Outputs are not simultaneous.		¹¹⁾ Near field Gaussian fit is >80%.		NC IN pulse.	
For PL2230 series laser with –SH, -SH/T FH or -SH/TH/FH option or –SH/TH/FH module.	'H, -SH/ ¹²⁾ Average of X- and ' //FiH divergence values r	¹²⁾ Average of X- and Y-plane full angle divergence values measured at the 1/e ² level		delay can be adjusted ecified range.	
For PL2230 series laser with –TH, -SH/T -SH/TH/FH option or –SH/TH/FH/FiH m	H or ¹³⁾ Beam pointing stab	at 1064 nm. ¹³⁾ Beam pointing stability is evaluated from fluctuations of beam centroid position in the		ate room air conditionir d.	
For PL2230 series laser with -SH/FH or TH/FH option or -SH/TH/FH/FiH modu	-SH/ far field. le. ¹⁴⁾ Beam diameter is n	far field. If laser is optimised for p		erator, maximum out	

For PL2230 series laser with –SH/TH/FH/FiH module.

Other Ekspla Products

Picosecond Tunable Systems

Nanosecond Lasers

Nanosecond Tunable Lasers

Femtosecond Lasers

PL2230 SERIES

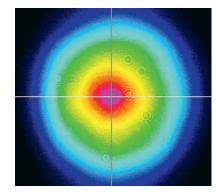
Custom products, tailored for specific applications ¹⁾

Model	PL2231B-20 (inquire)	PL2231C-20 (inquire)		
Pulse energy ²⁾				
at 1064 nm	100 mJ	140 mJ		
at 532 nm ³⁾	45 mJ	60 mJ		
at 355 nm 4)	28 mJ	35 mJ		
at 266 nm ⁵⁾	11 mJ	15 mJ		
Pulse duration (FWHM) ⁶⁾	80 ps	80 ps ± 10 %		
Pulse repetition rate	20 Hz			

¹⁾ Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options. Specifications for models PL2231B and C are preliminary and should be confirmed against quotation and purchase order.

- For PL2230 series laser with –SH, -SH/TH, -SH/FH or -SH/TH/FH option or –SH/TH/FH/FiH module.
 For PL2230 series laser with –TH, -SH/TH or -SH/TH/FH option or
- For PL2230 series laser with –1H, -SH/TH or -SH/TH/FH option or –SH/TH/FH/FiH module.
- $^{\rm 5)}\,$ For PL2230 series laser with -SH/FH or -SH/TH/FH option or –SH/TH/FH/FiH module.
- $^{\circ}$ $\,$ FWHM. Inquire for optional pulse durations in 20 90 ps range. Pulse energy specifications may differ from indicated here.

OPTIONS

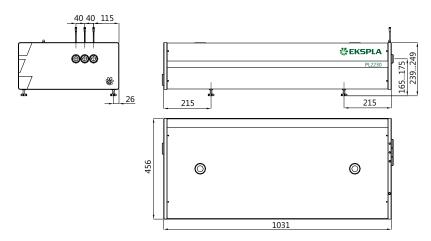

2) Outputs are not simultaneous.

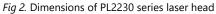
 Option P20 provides 20 ps ±10% output pulse duration. Pulse energies are ~ 30 % lower in comparison to the 28 ps pulse duration version. See table below for pulse energy specifications:

Model	PL2231-50	PL2231A-50
1064 nm	23 mJ	28 mJ
532 nm	9 mJ	13 mJ
355 nm	6 mJ	9 mJ
266 nm	2 mJ	4 mJ

Option P80 provides 80 ps ±10%output pulse duration. Pulse energy specifications are same as those of 28 ps lasers.

BEAM PROFILE


Fig 1. Typical near field output beam profile of PL2230 model laser


Femtosecond Lasers

PL2230 SERIES

OUTLINE DRAWINGS

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

PL2231-50-SH/TH/FH-P20

Мо	del
Pulse rep rate in Hz	

options: $SH \rightarrow$ second harmonic TH \rightarrow third harmonic $FH \rightarrow fourth harmonic$

Harmonic generator

Other options:

- P20 20±2 ps pulse duration \rightarrow option
- P80 80 ps pulse duration _ option

Femtosecond Lasers

Picosecond Lasers

Picosecond Tunable Systems

PL2210 • PL2230 • PL2250 • SL230

PL2250 SERIES

PL2250 series lasers cost-effective design improves laser reliability and reduces running and maintenance costs.

Innovative design

The heart of the system is a diode pumped solid state (DPSS) master oscillator placed in a hermetically sealed monolithic block. The flashlamp pumped regenerative amplifier is replaced by an innovative diode pumped regenerative amplifier. Diode pumping results in negligible thermal lensing, which allows operation of the regenerative amplifier at variable repetition rates, as well as improved long-term stability and maintenance-free operation.

The optimized multiple-pass power amplifier is flashlamp pumped and is optimized for efficient amplification of pulse while maintaining a near Gaussian beam profile and low wavefront distortion. The output pulse energy can be adjusted in approximately 1% steps, at the same time as pulse-to-pulse energy stability remains less than 0.8% rms at 1064 nm. Angle-tuned KD*P and KDP crystals mounted in thermostabilised ovens are used for second, third and fourth harmonic generation. Harmonic separators ensure the high spectral purity of each harmonic directed to different output ports.

Built-in energy monitors continuously monitor output pulse energy. Data from the energy monitor can be seen on the remote keypad or PC monitor. The laser provides several triggering pulses for synchronization of the customer's equipment. The lead or delay of the triggering pulse can be adjusted in 0.25 ns steps from the control pad or PC. Up to 1000 μ s lead of triggering pulse is available as a pretrigger feature.

Precise pulse energy control, excellent short-term and long-term stability, and up to 20 Hz repetition rate makes PL2250 series lasers an excellent choice for many demanding scientific applications.

Simple and convenient laser control

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands) or LAN (REST API) interfaces or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

Flash-Lamp Pumped Picosecond Nd:YAG Lasers

FEATURES

- Hermetically sealed DPSS master oscillator
- Diode pumped regenerative amplifier
- Flashlamp pumped power amplifier producing up to 100 mJ per pulse at 1064 nm
- 30 ps pulse duration
 (20 ps optional)
- Excellent pulse duration stability
- Up to 20 Hz repetition rate
- Streak camera triggering pulse with <10 ps jitter
- Excellent beam pointing stability
- Thermo-stabilized second, third, fourth and fifth harmonic generator options
- ► PC control via USB and LabVIEW[™] drivers
- Remote control via keypad

APPLICATIONS

- Time resolved spectroscopy
- ▶ SFG/SHG spectroscopy
- Nonlinear spectroscopy
- OPG pumping
- Remote laser sensing
- ▶ Satellite ranging
- Other spectroscopic and nonlinear optics experiments

XEKSPLA

High Intensity Lasers

PL2250 SERIES

SPECIFICATIONS ¹⁾

Model	PL2251A	PL2251B	PL2251C		
Pulse energy					
at 1064 nm	50 mJ ²⁾	80 mJ ²⁾	100 mJ		
at 532 nm ³⁾	25 mJ	40 mJ	50 mJ		
at 355 nm ⁴⁾	15 mJ	24 mJ	30 mJ		
at 266 nm ⁵⁾	7 mJ	10 mJ	12 mJ		
at 213 nm ⁶⁾	inquire	inquire	inquire		
Pulse energy stability, (StdDev.) 7)		•			
at 1064 nm		< 0.8 %			
at 532 nm	<1.0 %				
at 355 nm	< 1.1 %				
at 266 nm		< 1.2 %			
Pulse duration (FWHM) ⁸⁾		30 ± 3 ps			
Pulse duration stability ⁹⁾		± 1.0 ps			
Repetition rate	20 ი	or 10 Hz	10 Hz		
Polarization	200	linear, vertical, >99			
Pre-pulse contrast	>200·1 (r	peak-to-peak with respect			
Optical pulse jitter	>200.1 (p	internal / external			
Internal triggering regime ¹⁰	< 50 pc	s (StdDev) with respect to			
External triggering regime ¹¹	· · ·	s (StdDev) with respect to			
	~3 11	-500 50 ns			
SYNC OUT pulse jitter ¹⁰⁾		-500 50 ns			
SYNC OUT pulse delay ¹²⁾					
Beam divergence ¹³⁾		< 0.5 mrad			
Beam pointing stability ¹⁴⁾	0	≤ 20 µrad	12		
Beam diameter ¹⁵⁾	~ 8 mm	~10 mm	~12 mm		
Typical warm-up time		30 min			
PHYSICAL CHARACTERISTICS					
Laser head size (W \times L \times H)	456×1233×249 mm ±3 mm (for PL2251A, B with harmonic and C models) 456×1031×249 mm ±3 mm (for PL2251A, B models without harmonic)				
Electric cabinet size (W \times L \times H)	550	×600×550 ±3 mm (19" sta	andard, MR-9)		
Umbilical length		2.5 m			
OPERATING REQUIREMENTS					
Water consumption (max 20 °C)	water cooled	water consumption (may	(20 °C) <8 l/min 2 har		
Room temperature	water cooled,	water cooled, water consumption (max. 20 °C), <8 l/min, 2 bar 22 ± 2 °C			
Relative humidity		22 ± 2 ℃ 20-80 % (non-condensing)			
Power requirements ¹⁶⁾	cina				
i ower requirements "	SING	single phase, 200–240 V AC, 16 A			
		-			
Power ¹⁷⁾	< 1.5 kVA	< 2.5 kVA	< 2.5 kVA		
Power ¹⁷) Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typica performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and	 < 1.5 kVA ⁷⁾ Averaged from pulses, time interval. ⁸⁾ FWHM. Inquire for op 20 – 90 ps range. Puls may differ from indica 	< 2.5 kVA , emitted during 30 sec stional pulse durations in se energy specifications ited here. period when ambient			
Power ¹⁷⁾ Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typica performance and will vary with each unit w manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and basic system without options.	 < 1.5 kVA ⁷⁾ Averaged from pulses, time interval. ⁸⁾ FWHM. Inquire for op 20 – 90 ps range. Puls may differ from indica ⁹⁾ Measured over 1 hour temperature variation nergy. ¹⁰⁾ With respect to TRIG1 	< 2.5 kVA , emitted during 30 sec tional pulse durations in se energy specifications ted here. period when ambient is less than ±1 °C. OUT pulse. <10 ps jitter	< 2.5 kVA		
 Power ¹⁷) Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typica performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and basic system without options. PL2251B-20 has 70 mJ at 1064 nm output elements. 	< 1.5 kVA 7 Averaged from pulses, time interval. 9 FWHM. Inquire for op 20 – 90 ps range. Puls may differ from indica d for 9 Measured over 1 hour temperature variation nergy. 10 With respect to TRIG1 is provided with PRET	< 2.5 kVA , emitted during 30 sec tional pulse durations in see energy specifications ted here. period when ambient is less than ±1 °C. OUT pulse. <10 ps jitter RIG standard feature. IN pulse. lay can be adjusted with	< 2.5 kVA		
 Power ¹⁷) Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typica performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and basic system without options. PL2251B-20 has 70 mJ at 1064 nm output el Inquire for these energies at other waveleng. For -SH option. Outputs are not simultaneo Please inquire for pulse energies at other 	 < 1.5 kVA ⁷⁾ Averaged from pulses, time interval. ⁸⁾ FWHM. Inquire for op 20 – 90 ps range. Puls may differ from indica ⁹⁾ Measured over 1 hour temperature variation nergy. ¹⁰⁾ With respect to TRIG1 is provided with PRETI provided with PRETI Puls. ¹⁰⁾ With respect to SYNC ¹²⁾ TRIG1 OUT lead or del 0.25 ns steps in specificous. ¹³⁾ Average of X- and Y-p divergence values me. 	< 2.5 kVA , emitted during 30 sec tional pulse durations in see energy specifications ted here. r period when ambient is less than ±1 °C. OUT pulse. <10 ps jitter RIG standard feature. IN pulse. lay can be adjusted with fied range.	< 2.5 KVA VIEW ANDOR INVISION LARGE NUMBER ANDOR INVISION LARGE NUMBER AND INVISION		
 Power ¹⁷) Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typica performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and basic system without options. PL2251B-20 has 70 mJ at 1064 nm output el Inquire for these energies at other waveleng For -SH option. Outputs are not simultaneo Please inquire for pulse energies at other wavelengths. 	 < 1.5 kVA ⁷⁾ Averaged from pulses, time interval. ⁸⁾ FWHM. Inquire for op 20 – 90 ps range. Puls may differ from indica ⁹⁾ Measured over 1 hour temperature variation nergy. ¹⁰⁾ With respect to TRIG1 gths. ¹⁰⁾ With respect to SYNC ¹²⁾ TRIG1 OUT lead or del 0.25 ns steps in specif ous. ¹³⁾ Average of X- and Y-p divergence values merat 1064 nm. ¹⁴⁾ Beam pointing stabilit 	< 2.5 kVA , emitted during 30 sec tional pulse durations in see energy specifications ted here. period when ambient is less than ±1 °C. OUT pulse. <10 ps jitter RIG standard feature. IN pulse. lay can be adjusted with fied range. plane full angle asured at the 1/e ² level	< 2.5 kVA		

Picosecond Lasers

Other Ekspla Products

OPTIONS

Option P20 provides 20 ps ± 10% output pulse duration. Pulse energies are 30% lower in comparison to the 30 ps pulse duration version. Linewidth <2 cm⁻¹ at 1064 nm. See table below for pulse energy specifications:

Model	PL2251A-10	PL2251B-10	PL2251C -10
1064 nm	35 mJ	60 mJ	80 mJ
532 nm	17 mJ	30 mJ	40 mJ
355 nm	12 mJ	18 mJ	24 mJ
266 nm	5 mJ	8 mJ	10 mJ

Option P80 provides 80 ps ±10% output pulse duration. Pulse energy specifications as below:

Model	PL2251A	PL2251B	PL2251C
Pulse energy at 1064 nm	70 mJ	100 mJ	160 mJ

Option PLL allows locking the master oscillator pulse train repetition rate to an external RF generator, enabling precise external triggering with low jitter. Inquire for more information.

BEAM PROFILE

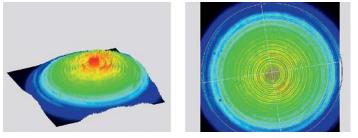


Fig 1. Typical near field output beam profile of PL2250 series laser

155 **OUTLINE DRAWINGS** * EKSPLA ۲ L65...175 Ľ 26 215 215 456 \bigcirc \bigcirc Fig 2. Dimensions of PL2250 series laser head 1031

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

PL2251A-50-SH/TH/FH-P20

FH

Pulse repetition rate in Hz Harmonic generator options: SH \rightarrow second harmonic TH \rightarrow third harmonic

 \rightarrow fourth harmonic

FS

Other options:

 $\begin{array}{rrr} \text{P20} & \rightarrow & \text{20 ps pulse duration option} \\ \text{P80} & \rightarrow & \text{80 ps pulse duration option} \\ \end{array}$

239...249

- AW → water-air heat exchanger option PLL → pulse repetition rate locking
 - → pulse repetition rate locking option
 - → seeding option

PL2210 • PL2230 • PL2250 • SL230

SL230 SERIES

SL230 series lasers are excellent solution for applications, where high energy picosecond pulses are needed. Not like conventional mode-locked lasers that typically uses saturable nonlinear absorption or Kerr lensing to produce ultrafast pulses, the SL230 series lasers employ backwardstimulated Brillouin scattering (SBS) in liquid for the same purpose.

Innovative design

Diode pumped electro-optically Q-switched single longitudinal mode (SLM) nanosecond generator is the heart of the system. It provides nanosecond optical pulse that is later compressed during SBS in a special cell.

Q-switched master oscillator allows precise external triggering with jitter of less than 0.2 ns rms while modelocked lasers typically have jitters of at least of tens of nanoseconds or even worse. Precise sync pulses from internal delay generator are also available with less than 200 ps rms jitter with respect to optical pulse.

Pulse compression is done in SBS-cell. The geometry of interaction is designed to produce shortest and most stable pulses with 120 ps duration. After SBS compression, pulse is directed to multi-pass flashlamp pumped power amplifier for amplification to up to 500 mJ pulse energy. Completely diode pumped version of SL231 is available under special request.

Thermocontrolled harmonic generators, based on angle-tuned KD*P and KDP crystals and harmonic separation optics are available as standard options. Each wavelength has a separate output port.

Build in energy monitors continuously monitors output pulse energy. Data from the energy monitor can be seen on the remote keypad or on PC screen.

Power supply and cooling units are mounted into standard 19" rack.

Simple and convenient laser control

Laser is controlled by PC via USB or RS232 port. Free add-on communication module allows control from Windows and non-Windows OS machines: Windows, Windows CE, Linux, LabVIEW RT, etc. and enables additional LAN and WLAN interfaces. In addition, major settings of laser can be controlled through remote control pad.

SBS Compressed Picosecond DPSS Nd:YAG Lasers

FEATURES

- Diode pumped Q-switched SLM master oscillator
- Flashlamp pumped power amplifier for up to 500 mJ pulse energy at 1064 nm
- Advanced SBS compression produces pulses down to 120 ps duration
- Excellent pre-pulse contrast ratio
- Thermo stabilized second, third or fourth harmonic generator options
- Low jitter external triggering
- Sync pulses output with < 200 ps rms jitter
- ▶ Laser control from PC or keypad

BENEFITS

- High brightness and intensity pulses are highly suitable for plasma generation
- Picosecond pulse duration benefits such applications, as satellite ranging, material ablation, tattoo removal
- SLM and narrow linewidth is beneficial for interferometry, holography, DIAL LIDAR
- Lots of interfaces USB, RS232, LAN, WLAN ensure easy integration to various equipment

APPLICATIONS

- Plasma research
- Interferometry
- Satellite ranging
- Material ablation and deposition
- Aesthetics

Picosecond Lasers

High Intensity Lasers

Other Ekspla Products

SPECIFICATIONS ¹⁾

Model		SL231 ²⁾	SL234	SL235
Max. pulse energy:				
at 1064 nm		20 mJ	250 mJ	500 mJ
at 532 nm ³⁾		8 mJ	125 mJ	240 mJ
at 355 nm ⁴⁾		5 mJ	70 mJ	140 mJ
at 266 nm ⁵⁾		2 mJ	40 mJ	80 mJ
at 213 nm ⁶⁾			inquire	
Pulse energy stability (StdDev): 7)		1		
at 1064 nm		2 %		1.5 %
at 532 nm		3.5 %	3 %	
at 355 nm		5 %	4 %	
at 266 nm		8 %		7 %
at 213 nm			inquire	
Pulse duration at 1064 nm (FWHM) ⁸⁾		120 ps	± 15 %	150 ps ± 15 %
Pulse duration stability at 1064 nm (StdDev)	7)	•	5 %	
Repetition rate		50 Hz	10 Hz	5 Hz
Linewidth			≤ 0.2 cm ⁻¹	
Polarization ratio at 1064 nm			> 1:100	
Optical pulse jitter (StdDev) ⁹⁾			0.2 ns	
Beam profile		near Gaussian		p Hat ¹⁰⁾
Beam pointing stability at 1064 nm ¹¹⁾			< 50 µrad	F
Beam divergence ¹²⁾		< 1.3 mrad < 0.5 mrad) 5 mrad
Beam height		170±5 mm		
Contrast ratio		≥ 10 ⁵ : 1		
Beam diameter ¹³⁾		~ 4 mm	~ 10 mm	~ 12 mm
			10 11111	12 1111
PHYSICAL CHARACTERICTICS				
Laser head size (W \times L \times H)		456 × 810 × 249 mm	456 × 10)31 × 249 mm
Electric cabinet size (W \times L \times H)		553 × 600	× 519 mm	553 × 600 × 665 mm
Umbilical length			2.5 m	
OPERATING REQUIREMENTS				
Water consumption (max. 20 °C)			< 10 liters/min	
Room temperature		18−24 °C		
Relative humidity			10-80 % (non-condensin	a)
		208 or 380 V AC,	•	r 230 V AC,
Power requirements		three phase, 50/60 Hz		nase, 50/60 Hz
Power consumption		< 2 kVA	< 3.5 kVA	< 4 kVA
 Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 1064 nm and for basic system without options. Completely diode pumped version of SL231 is available under special request. For -SH option. Outputs are not simultaneous. Please inquire for pulse energies at other wavelengths. For -TH option. Outputs are not simultaneous. Please inquire for pulse energies at other wavelengths. For -FH option. Outputs are not simultaneous. Please inquire for pulse energies at other wavelengths. For -FH option. Outputs are not simultaneous. 	sim oth 7) Avid 8) Inc 15C app this 9) In trig 10) Ne avid avid 10 RM po be 12) Ful 13) Be	r custom -FiH option. Outputs are nultaneous. Please inquire for pulse er wavelengths. eraged from 300 pulses. quire for optional variable pulse du) – 400 ps or 400 – 1000 ps range ply for SL231). Some of laser specif s option may differ from those with external triggering mode with two ggering pulses for flashlamps and 0 rar Gaussian fit profile with lower er ailable by request. AS value measured from 300 shots. inting stability is evaluated from flu am centroid position in the far field II angle measured at the 1/e ² point am diameter is measured at 1064 r ² level.	e energies at rations in (does not ications with hout it. separate Q-switch. nergy is . Beam uctuations of d. at 1064 nm.	USER AND/OR INVISIEL LASER RADA/ICD MOD PT OR SIGN BODGUE TO DARC MELICITIC OR SIGN BODGUE TO DARC MARK 500 mi, Darle 128 pr. CASS IV LASER PRODUCT

SL230 SERIES

OPTIONS

▶ Variable pulse duration options -VPx and -VPCx

SL series lasers offer a unique capability for tuning pulse duration. The tuning is done by changing the geometry of interaction in the SBS compressor. Two tuning ranges – 150–400 ps (option -VP1) and 400–1000 ps (option -VP2) – are available as standard options.

While the -VPx option requires manual tuning of optical layout components for pulse duration change, the -VPCx option provides motorized tuning that allows a change in pulse duration from a personal computer (purchased separately) or laser control pad.

Note. Certain specifications may change when the laser is configured for variable pulse duration. Contact Ekspla for detailed data sheets.

OUTLINE DRAWINGS

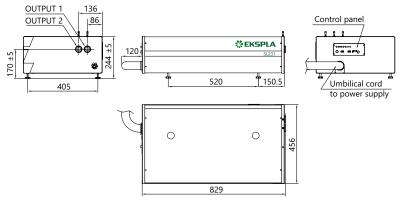
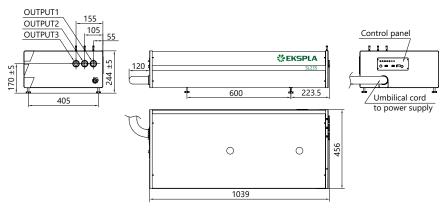



Fig 1. SL231 laser head outline drawing

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Picosecond Lasers

High Intensity Lasers

PL2210 • PL2230 • PL2250 • SL230

Picosecond Nd:YLF Lasers

Nd:YLF mode-locked picosecond lasers produces high energy pulses with as short as 10 ps pulse duration.

Rugged and reliable design

Diode pumped mode-locked quasi-CW master oscillator produces the train of the pulses that is guided to the regenerative amplifier for further amplification. The single pulse is cavity-dumped from regenerative amplifier and then amplified by linear amplifiers to up to 80 mJ pulse energy. The output pulse energy can be adjusted in approximately 1 % steps from 1 mJ to nominal output, at the same time pulse-to-pulse energy stability remains less than 1.5 % rms at 1053 nm.

Angle-tuned KD*P and KDP crystals mounted in thermostabilised ovens are used for second, third and fourth harmonic generation. Harmonic separators ensure high spectral purity of each harmonic directed to different output port.

Build in energy monitors continuously monitors output pulse energy. Data from the energy monitor can be seen on the remote keypad or on PC monitor. The laser provides triggering pulse for synchronization of customer's equipment with lead up to 500 ns. The lead of triggering pulse can be adjusted in ~0.25 ns steps from control pad or PC.

PRETRIG is standard feature for streak camera triggering and can provide pulse with up to 1000 μ s lead that can be adjusted from PC with approx. 33 ns step.

Simple and convenient laser control

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands) or LAN (REST API) interfaces or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

Custom product, tailored for specific applications

FEATURES

- ▶ 10 ps pulse duration
- Fiber master oscillator
- Diode pumped regenerative amplifier
- Flashlamp pumped power amplifier producing up to 70 mJ per pulse at 1053 nm
- Excellent pulse duration stability
- Up to 10 Hz repetition rate
- ► PC control via USB (RS232 is optional) and LabView[™] drivers
- ▶ Remote control pad
- Optional streak camera triggering pulse with <10 ps rms jitter
- Optional thermostabilized second, third or fourth harmonic generators
- Optical parametric generators for tunable wavelength output in 210–2600 nm range are available

APPLICATIONS

- Time resolved spectroscopy
- ► Nonlinear spectroscopy
- OPG pumping
- Other spectroscopic and nonlinear optics experiments

***EKSPLA**

Picosecond Lasers

High Intensity Lasers

Picosecond Nd:YLF Lasers

SPECIFICATIONS ¹⁾

Model		PL3143	PL3143A			
Pulse energy						
at 1053 nm		40 mJ	70 mJ			
at 526.5 nm ²⁾		20 mJ	35 mJ			
at 351 nm ³⁾		10 mJ	17 mJ			
at 263 nm ³⁾		Contact Ekspla				
Pulse duration (FWHM) ⁴⁾		10	±2 ps			
Repetition rate		10 Hz	5 Hz			
Triggering mode		interna	l / external			
SYNC OUT pulse jitter ⁵⁾		< 1	100 ps			
SYNC OUT pulse lead/delay ⁶⁾		-500)50 ns			
PHYSICAL CHARACTERISTICS						
Laser head size (W \times L \times H)		462 × 1245 × 255 mm				
Electric cabinet size (W \times L \times H)		550 × 600 × 835 mm				
Umbilical length		2.5 m				
OPERATING REQUIREMENTS						
Water consumption (max 20 °C)		< 5	5 l/min			
Room temperature		22±2 °C				
Relative humidity		20-80 % (non-condensing)				
Power requirements 7)		three phase, 208 or 380 V AC, 20 A, 50/60 Hz				
Power consumption		< 2.5 kVA	< 3 kVA			
 Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 1053 nm and for basic system without options. For -SH option. Outputs are not simultaneous. Please inquiry for pulse energies at other wavelengths. 	5) Wit pro 6) SYI ~0.2 sta lea 7) Ma	uiry for optional pulse durations in -80 ps range. th respect to optical pulse. <10 ps jitter is ovided with PRETRIG standard feature. NC OUT lead or delay can be adjusted with 25 ns steps in specified range. PRETRIG ndard feature provide -10005000 µs id/delay time adjustment range. ins voltage should be specified when dering.	VSIBLE ANCIOR INVOIDEL LASER RADATIN ANDIO PTY OR SINN DAPOSIDER TO RICKTU ANDIO PTY OR SINN DAPOSIDER TO RICKTU ANDIO PTY OR SINN DAPOSIDER TO RICKTU ANDIO PTY OR SINN DAPOSIDER TO RICKTU			

PRETRIG FEATURE

³⁾ With auxiliary H400 harmonic generator unit. Outputs are not simultaneous. Please inquiry for pulse energies at other wavelengths.

PRETRIG standard feature provides low jitter pulse for streak camera triggering with delay in -1000...5100 $\mu s\,$ range and <10 ps rms jitter.

BEAM PROFILE

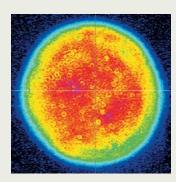
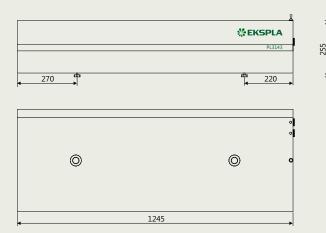


Fig 1. Typical beam profile at 1053 nm at 20 cm from PL3143B laser output at 80 mJ pulse energy


28

High Intensity Lasers

Picosecond Lasers

OUTLINE DRAWINGS

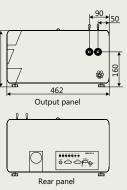


Fig 2. Dimensions of PL3143 and PL3143A lasers

ORDERING INFORMATION

Note: Laser must be
connected to the mains
electricity all the time. If there
will be no mains electricity for
longer that 1 hour then laser
(system) needs warm up for a
few hours before switching on.

PL3143A-5-SH/TH/FH-AW

Model	Options: AW → w
energy level: → 50 mJ output	h
ter → 30 mJ output	Harmonic ge options:
	SH → secor

Pulse repetition rate in Hz

Pulse A no let

ons: → water-air heat exchange	r
•	

Har	monic generator
opti	ons:
SH	→ second harmonic
ΤH	→ third harmonic

 $FH \rightarrow fourth harmonic$

Photo: PT series tunable wavelength laser features pump laser and OPG integrated into single/rugged housing for better performance and easy integration in other systems

1

4

PT277

1.5

High Intensity Lasers

Picosecond Tunable Systems

For researchers demanding wide tuning range, high conversion efficiency and narrow line-width, EKSPLA PG series optical parametric generators is an excellent choice. All models feature hands-free wavelength tuning, valuable optical components protection system as well as wide range of accessories and extension units.

Long-term experience and close cooperation with scientific institutions made it possible to create range of models, offering probably the widest tuning range: from 193 nm to 16000 nm. Versions, offering near transform limited line-width as well as operating at kHz repetition rates are available.

For customer convenience the wavelength can be set from personal computer through USB (RS-232 is optional) interface using supplied LabVIEW™ drivers or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses. EKSPLA PL series picosecond mode-locked lasers are recommended for pumping of PG series Optical Parametric Generators. Combining together, researchers get complete tunable wavelength system, capable to assist researchers in wide range of spectroscopy applications: time-resolved pump-probe, nonlinear, infrared spectroscopy, laser-induced fluorescence.

SHORT SELECTION GUIDE

For Your convenience, table contains all available options and highest parameter values. Not all output specifications are available at the same time simultaneously. Please refer to the catalog page for exact specifications and available options.

Model	Output wavelength range	Max pulse repetition rate	Linewidth	Special feature	Page
PGx01	193–16000 nm	50 Hz	< 6 cm ⁻¹	High peak power (>50 MW), ideal for non-linear spectroscopy	32
PGx03	210-2300 nm	1000 Hz	< 6 cm⁻¹	Operating at kHz repetition rate	36
PGx11	193–16000 nm	50 Hz or 1000 Hz	< 2 cm ⁻¹	Narrow linewidth (<0.8 cm ⁻¹ on some versions)	39
PT277	1400 – 2 050, 2 200 – 4 450 nm	87 MHz	< 1 cm ⁻¹	Optional intensity modulation up to 2 MHz	44

PICOSECOND TUNABLE SYSTEMS

PGx01 • PGx03 • PGx11 • PT277

PGx01 SERIES

Travelling Wave Optical Parametric Generators (TWOPG) are an excellent choice for researchers who need an ultra-fast tunable coherent light source from UV to mid IR.

Design

The units can be divided into several functional modules:

- optical parametric generator (OPG);
- diffraction grating based linewidth narrowing system (LNS);
- optical parametric amplifier (OPA);
- electronic control unit.

The purpose of the OPG module is to generate parametric superfluorescence (PS). Spectral properties of the PS are determined by the properties of a nonlinear crystal and usually vary with the generated wavelength. In order to produce narrowband radiation, the output from OPG is narrowed by LNS down to 6 cm⁻¹ and then used to seed OPA.

Output wavelength tuning is achieved by changing the angle of the nonlinear crystal(s) and grating. To ensure exceptional wavelength reproducibility, computerized control unit driven precise stepper motors rotate the nonlinear crystals and diffraction grating. Nonlinear crystal temperature stabilization ensures long-term stability of the output radiation wavelength.

In order to protect nonlinear crystals from damage, the pump pulse energy is monitored by built-in photodetectors, and the control unit produces an alert signal when pump pulse energy exceeds the preset value.

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands) or LAN (REST API) interfaces or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

High Energy Broadly Tunable OPA

FEATURES

- Ultra-wide spectral range from 193 to 16000 nm
- High peak power (>50 MW) ideal for non-linear spectroscopy applications
- Narrow linewidth <6 cm⁻¹ (for UV < 9 cm⁻¹)
- Motorized hands-free tuning in 193–2300 nm or 2300–16000 nm range
- ► PC control via USB port (RS232 is optional) and LabVIEW[™] drivers
- Remote control via keypad

APPLICATIONS

- Nonlinear spectroscopy: vibrational-SFG, surface-SH, Z-scan
- Pump-probe experiments
- ► Laser-induced fluorescence (LIF)
- Other laser spectroscopy applications

Available models

Model	Features
PG401	Model has a tuning range from 420 to 2300 nm and is optimized for providing highest pulse energy in the visible part of the spectrum. The wide tuning range makes PG401 units suitable for many spectroscopy application.
PG501-DFG	Model has a tuning range from 2300 to 16000 nm. The PG501-DFG1 model is the optimal choice for vibrational-SFG spectroscopy setups.

Picosecond Lasers

High Intensity Lasers

PGx01 SERIES

SPECIFICATIONS ¹⁾

Model	PG401	PG401-SH	PG401-DUV	PG501-DFG1	PG501-DFG2		
Tuning range							
DUV	-	_	193–209.95 nm	-	_		
SH	-	210–340, 370–419 nm		_			
Signal	420 – 680 nm			_			
ldler	740 – 2300 nm			_	_		
DFG				2300-10000 nm	2300-16000 nm		
Output pulse energy ²⁾	> 1000 µJ at 450 nm	> 100 µJ at 300 nm	> 50 µJ at 200 nm	> 250 µJ at 3700 nm, > 50 µJ at 10000 nm	> 250 µJ at 3700 nm, > 80 µJ at 10000 nm		
Linewidth	< 6 cm ⁻¹	< 9	cm ⁻¹	< 6	cm ⁻¹		
Max pulse repetition rate			50 Hz	l			
Scanning step							
Signal	0.1 nm			-			
Idler	1 nm			_			
Typical beam size ³⁾	~4 mm	~3	mm	~9	mm		
Beam divergence ⁴⁾		< 2 mrad		-	_		
Beam polarization	_		tical	horiz	ontal		
Signal	horizontal			_			
Idler	horizontal			_			
Typical pulse duration	~15 ps	~12 ps	~12 ps	~20 ps	~20 ps		
		- 4 -					
PUMP LASER REQUIREMENTS							
Pump energy							
at 355 nm	-	10	mJ	-	-		
at 532 nm		-	-	10 mJ			
at 1064 nm	-	-	2 mJ	6 mJ	15 mJ		
Recommended pump source ⁵⁾		PL2231-50-TH, PL2251A-TH		PL2231-50-TH, PL2251A-TH	PL2231A-50-SH, PL2251B-SH		
Beam divergence			< 0.5 mrad				
Beam profile		homogeneo	· · · · · · · · · · · · · · · · · · ·	ots, Gaussian fit >90 %			
Pulse duration ⁶⁾			30 ± 5 ps				
PHYSICAL CHARACTERISTICS							
Size (W x L x H)	456 × 633 × 244 mm		456 × 10)31 × 249 ± 3 mm			
OPERATING REQUIREMENTS							
Room temperature			15 – 30 °C	2			
Power requirements	100 – 240 V AC single phase, 47 – 63 Hz						
Power consumption			< 100 W				
¹ Due to continuous improvement, all specifications are subject to change w notice. Parameters marked typical are specifications. They are indications of performance and will vary with each u manufacture. Unless stated otherwise specifications are measured at 450 nn PG401 units, 3000 nm for PG501 units 300 nm for PG401SH units and for ba: without options. ²⁰ See tuning curves for typical pulse en at other wavelengths. Higher energies available, please contact Ekspla for m details.	e not 'Full angle measured be and the FWHM point. (typical 'I fa pump laser other than PL2250 or PL2230 unit we is used, measured beam profile data should be s, all presented when ordering. In for 'Should be specified if non-EKSPLA pump laser is used. Hergies is are				VICIBLE AND/OR INVICIBLE LASER RADIATION AVOID EVE OR SKIN EXPOSURE TO DIRECT REFLECTED OR SCATTERED RADIATION Turable, 210 – 16000 nm Mas. I nu, puble 20 ps		

***EKSPLA** REV. 20200330 SAVANORIU AV. 237, LT-02300 VILNIUS, LITHUANIA TEL + 370 5 2649629 E-MAIL SALES@EKSPLA.COM WWW.EKSPLA.COM

CUSTOMIZED FOR SPECIFIC REQUIREMENTS

Please note that these products are custom solutions tailored for specific applications or specific requirements.

Interested? Tell us more about your needs and we will be happy to provide you with tailored solution.

PG401-DFG1 provides:

- The broadest hands-free tuning range from 420 to 10000 nm
- ▶ It can be further extended up to 16000 nm with -DFG2 option. It should be noted, that for the 8000 - 16000 nm range a different nonlinear crystal is used, and exchange of the crystals needs to be done manually

PG402 features:

- ► Gap-free tuning range 410 – 709, 710 – 2300 nm
- ▶ Linewidth < 18 cm⁻¹

TUNING CURVES

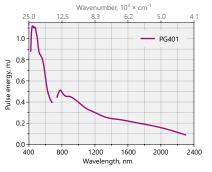
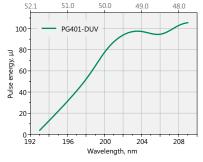
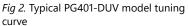



Fig 1. Typical PG401 model tuning curve Pump energy: 10 mJ at 355 nm


Note: The energy tuning curves are affected by air absorption due narrow linewidth. These pictures present pulse energies where air absorption is negligible.

ON OPTICAL TABLE

Wavenumber, 10³

× cm

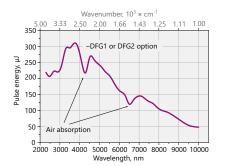


Fig 4. Typical PG501-DFG1 tuning curve in 2300-10000 nm range Pump energy: 7 mJ at 1064 nm

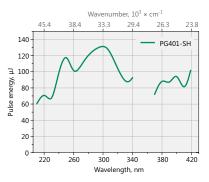


Fig 3. Typical PG401-SH model tuning curve. Pump energy: 10 mJ at 355 nm

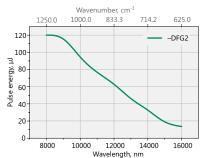
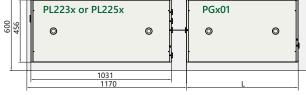
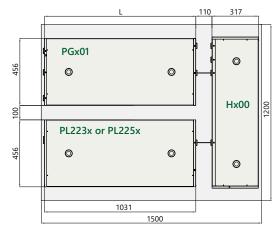
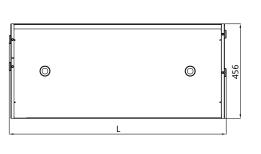



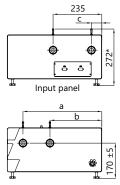
Fig 5. Typical PG501-DFG2 tuning curve in 8000-16000 nm range Pump energy: 15 mJ at 1064 nm

Picosecond Lasers

RECOMMENDED UNITS ARRANGEMENT

Fig 6. Arrangement of pump laser and PGx01 unit on optical table


Fig 7. Recommended arrangement of pump laser and PGx01-DFGx unit on optical table

PGx01 SERIES

OUTLINE DRAWINGS

0	UΤ	PU.	ΓS	PO	RTS	

Model	L, mm	a, mm	b, mm	c, mm	Port 1	Port 2
PG401	633	380	×	×	420–680 nm, 740–2300 nm	-
PG401-SH	838	380	×	×	210–340 nm, 370–419.9 nm, 420–680 nm, 740–2300 nm	-
PG401-SH/DUV	1026	380	250	50	210–340 nm, 370–419 nm, 420–680 nm, 740–2300 nm	192–209.95 nm

Fig 8. PG401 external dimensions

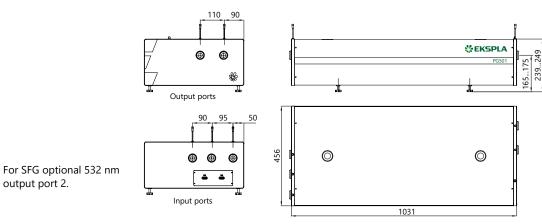


Fig 9. PG501 external dimensions

ORDERING INFORMATION

output port 2.

PG401-DUV

PG401-	DUV	PG501-DFG1		
Model PG4xx → 355 nm pump	Optional tuning range extension DUV \rightarrow 193–209.95 nm SH \rightarrow 210-340 nm &	Model PG5xx → 532 nm pump		
 01 → travelling wave, narrowed linewidth 02 → travelling wave, not narrowed 11 → synchronous pumping, 	370-420 nm Custom products, tailored for	01 → travelling wave, narrowed linewidth		
	specific applications. Inquire for other specifications.	Tuning range DFG1 → 2300–10000 nm:		
narrowed	DFG1 → 2300–10000 nm; >250 µJ at 3700 nm DFG2 → 2300–16000 nm	DFG1 \rightarrow 2500-10000 fml, >250 μ J at 3700 nm DFG2 \rightarrow 2300-16000 nm		

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on. Femtosecond Lasers

Picosecond Lasers

PICOSECOND TUNABLE SYSTEMS

PGx01 • PGx03 • PGx11 • PT277

PGx03 SERIES

PGx03 series Optical Parametric Generators (OPG) are designed to be pumped by 1 kHz mode-locked lasers with 1 W average power. An excellent choice is the PL2210A series mode-locked picosecond laser from EKSPLA.

The optical design is optimized to produce low divergence beams with moderate linewidth (typically 12 cm⁻¹) at approximately 15 - 20 ps pulse duration. Due to the unique broad tunability range from 210 to 2300 nm these devices are an excellent choice for many spectroscopic applications.

Upon request the optical layout can be easily modified for pumping by other mode-locked lasers with high pulse energy or longer pulse duration.

Three models designed for pumping by up to the 3rd harmonic of Nd:YAG laser are available.

Microprocessor based control system provides automatic positioning of relevant components for hands free operation. Nonlinear crystals, diffraction grating and filters are rotated by ultra-precise stepper motors in the microstepping mode, with excellent reproducibility. Precise nonlinear crystal temperature stabilization ensures long-term stability of generated wavelength and output power.

For customer convenience the system can be controlled through its USB type PC interface (RS232 is optional) with LabView[™] drivers or a remote control pad. Both options allow easy control of system settings.

Available standard models are summarized in a table below. Please inquire for custom-built versions.

kHz Repetition Rate Broadly Tunable OPA

FEATURES

- Picosecond pulses at 1 kHz pulse repetition rate
- Hands-free wavelength tuning
- Tuning range from 210 nm to 2300 nm
- Narrow linewidth <6 cm⁻¹
- ▶ Low divergence <2 mrad
- ► PC control using USB (RS232 is optional) and LabVIEW™ drivers
- Remote control via keypad

APPLICATIONS

- Time resolved pump-probe spectroscopy
- Laser-induced fluorescence
- Infrared spectroscopy
- Nonlinear spectroscopy: vibrational-SFG, surface-SH, Z-scan
- Other laser spectroscopy applications

Available models

Model	Features
PG403	Model has a tuning range from 410 to 2300 nm and is optimized for providing the highest pulse energy in the visible part of the spectrum. When combined with an optional Second Harmonic Generator (SHG), it offers the widest possible tuning range – from 210 to 2300 nm.
PG503	Model has a tuning range from 700 to 2200 nm and the highest pulse energy in the near-IR spectral range. PG503 is a cost- effective alternative to the narrow-band mode-locked Ti:S lasers.

Picosecond Lasers

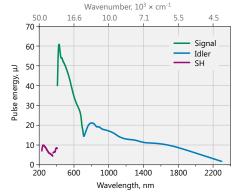
PGx03 SERIES

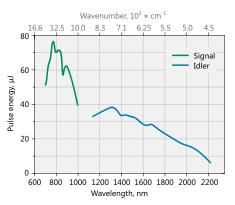
SPECIFICATIONS ¹⁾

Model	PG403	PG403-SH	PG503
OPA SPECIFICATIONS			
Output wavelength tuning range			
SH	-	210 – 410 nm	_
Signal	410 -	700 – 1000 nm	
Idler	710 –	2300 nm	1150 – 2200 nm
Output pulse energy ²⁾			
SH ³)	-	10 µJ	_
Signal	5		70 µJ
Idler ⁴⁾		5 μJ	25 μJ
Pulse repetition rate		1000 Hz	•
Linewidth		< 12 cm ⁻¹	
Typical pulse duration ⁵⁾	1	5 ps	20 ps
Scanning step		· · ·	
SH	_	0.05 nm	_
Signal		0.1 nm	
Idler		1 nm	
Typical beam size 6)		~ 3 mm	
Beam divergence ⁷⁾		< 2 mrad	
Beam polarization [®]			
SH	_	horizontal	
Signal		horizontal	
Idler		vertical	
Min pump energy ⁹⁾			
at 532 nm		-	0.45 mJ
at 355 nm	0.	3 mJ	-
Pulse duration ¹⁰⁾		30 ps	
Beam size ¹⁰⁾		2 – 3 mm	
Beam divergence		< 1 mrad	
Beam profile		eneous, without hot spots, Gaussia	
Recommended pump source	PL2210A-TH	PL2210A-TH	PL2210A-SH
PHYSICAL CHARACTERISTICS			
Size (W \times L \times H)	456 × 82	0 × 273 mm	456 × 632 × 273 mm
OPERATING REQUIREMENTS			
Room temperature		15 – 30 °C	
Power requirements		100 – 240 V single phase, 47 – 63	3 Hz
Power consumption		< 120 W	
Due to continuous improvement, all specifications are subject to change with notice. Parameters marked typical are no specifications. They are indications of typ performance and will vary with each uni manufacture. Unless stated otherwise, a specifications are measured at 450 nm fn PG403 units, at 800 nm for PG503 units for basic system without options. Pulse energies are specified at selected wavelengths. See typical tuning curves fn pulse energies at other wavelengths. Measured at 250 nm.	out wavelength and pur bical Beam diameter at th depending on the p l "Beam divergence m or "Separate output por ranges. Max pump energy is non-linear crystal siz or "Should be specified	and a section of the	
Measured at 1000 nm.			

⁵⁾ Estimated assuming 30 ps at 1064 nm pump

Femtosecond Lasers


Picosecond Lasers


PICOSECOND TUNABLE SYSTEMS

PGx03 SERIES

TUNING CURVES

Fig 1. Typical PG403-SH model tuning curve. *Pump energy – 0.3 mJ at 355 nm*

Fig 2. Typical PG503 model tuning curve. *Pump energy – 0.45 mJ at 532 nm*

RECOMMENDED UNITS ARRANGEMENT ON OPTICAL TABLE

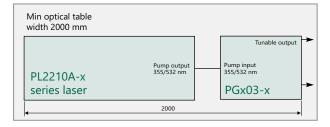


Fig 3. Arrangement of pump laser and PGx03 unit on optical table

OUTLINE DRAWINGS

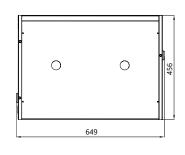


Fig 4. PGx03 model external dimensions

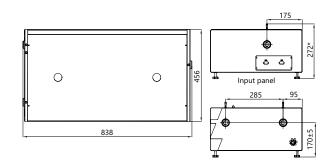


Fig 5. PGx03-SH model external dimensions

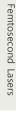
ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Model	
PG403	→ 355 nm pump
PG503	→ 532 nm pump

175

*624


70+5

۲

ōō

Input panel

PG403-SH Optional tuning range extension SH → 210-410 nm

Picosecond Lasers

PGx01 • PGx03 • PGx11 • PT277

PGx11 SERIES

PGx11 series optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform limited linewidth and low divergence. High brightness output beam makes the PGx11 series units an excellent choice for advanced spectroscopy applications.

Optical layout of PGx11 units consists of Synchronously pumped Optical Parametric Oscillator (SOPO) and Optical Parametric Amplifier (OPA). SOPO is pumped by a train of pulses at approx. 87 MHz pulse repetition rate. The output from SOPO consists of a train of pulses with excellent spatial and spectral characteristics, determined by the SOPO cavity parameters.

OPA is pumped by a single pulse temporally overlapped with SOPO output. After amplification at SOPO resonating wavelength, the PGx11 output represents a high intensity single pulse on top of a low-intensity train, while in all other spectral ranges (idler for PG411 and PG711, signal for PG511, also DFG stages) only a single high intensity pulse is present.

Three models designed for pumping by up to the 3rd harmonic of Nd:YAG laser are available.

Transform Limited Broadly Tunable Picosecond OPA

FEATURES

- > 2 cm⁻¹ or **0.8 cm⁻¹** linewidth
- High brightness picosecond pulses at 50 Hz or at up to 1 kHz pulse repetition rate
- Nearly Fourier-transform limited linewidth
- ▶ Low divergence <2 mrad
- Hands-free wavelength tuning
- Tuning range from 193 nm to 16000 nm
- ► PC control using USB (RS232 is optional) and LabVIEW[™] drivers
- Remote control via keypad

APPLICATIONS

- Time resolved pump-probe spectroscopy
- Laser-induced fluorescence
- Infrared spectroscopy
- Nonlinear spectroscopy: vibrational-SFG, surface-SH, Z-scan, pump probe
- Other laser spectroscopy applications

Available models

Model	Features
PG411	Model has a tuning range from 410 to 2300 nm and is optimized for providing highest pulse energy in the visible part of the spectrum. When combined with an optional Second Harmonic Generator (SHG) and Sum Frequency Generator (-DUV), it offers the widest possible tuning range – from 193 to 2300 nm.
PG511	Model has a tuning range 2300–10000 nm. PG411 and PG511 models are designed to be pumped by PL2230 series lasers with a 50 Hz pulse repetition rate.
PG711	Model has 1 kHz pulse repetition rate and uses DPSS mode-locked laser of the PL2210 series for pumping. When pumped with pulses of 90 ps duration, linewidths of less than 1 cm ⁻¹ were measured in the spectral range up to 16 μ m, which makes this device an excellent choice for time-resolved or nonlinear infrared spectroscopy.

Picosecond Lasers

High Intensity Lasers

XEKSPLA

PGx11 SERIES

Microprocessor based control system provides automatic positioning of relevant components, allowing hands free operation. Nonlinear crystals, diffraction grating and filters are rotated by ultra-precise stepper motors in microstepping mode, with excellent reproducibility. Precise nonlinear crystal temperature stabilization ensures long-term stability of generated wavelength and output power.

For customer convenience the system can be controlled through its USB type PC interface (RS232 is optional) with LabView[™] drivers or a remote control pad. Both options allow easy control of system settings. Available standard models are summarized in a table below. Please inquire for custom-built versions.

SPECIFICATIONS ¹⁾

Model	PG411	PG411-SH	PG411-SH-DUV	PG511-DFG	PG711	PG711-DFG
Output wavelength tuni	ng range					
SH, DUV	_	210–410 nm	193–410 nm		-	
Signal	410–709 nm			-	1550–2020 nm	
Idler		710–2300 nr	n	-	2250)–3350 nm
DFG		_		2300–10000 nm	_	3350–16000 nm
DFG2 (up to 16000 nm)		-		inquire		_
Output pulse energy 2)				· · · · · ·		
SH, DUV	-	100 µJ 3)	50 µJ 3)		-	
Signal		700 µJ		-		500 µJ
Idler 4)		250 µJ		-		100 µJ
DFG		_		> 200 µJ at 3700 nm, >50 µJ at 10000 nm	-	20 µJ ⁵⁾
Max pulse repetition rate		50 Hz	50 Hz	1000 Hz		
Linewidth		< 3 cm ^{-1 6)}		< 2 cm ⁻¹	< 0.8 cm ⁻¹	< 1 cm ⁻¹
Linewidth Idler		< 5 cm ^{-1 6)}			-	
Typical pulse duration 7)		~15 ps		~20 ps	~70 ps	
Scanning step						
SH, DUV	-	0	.01 nm		-	
Signal				0.02 nm		
Idler				0.1 nm		
DFG			-			1 nm
Typical beam diameter ⁸⁾		~ 4 mm		~ 9 mm ~ 3 mm		• 3 mm
Beam divergence 9)				< 2 mrad		
Beam polarization ⁹⁾						
SH, DUV	-	v	vertical		-	
Signal		horizontal		vertical horizontal		orizontal
ldler		vertical		horizontal	vertical	
DFG		_		horizontal	_	horizontal

- ¹⁾ Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 450 nm for PG411 units, 800 nm for PG511 units, and 1620 nm for PG711 units and for basic system without options.
- ²⁾ Pulse energies are specified at selected wavelengths. See typical tuning curves for pulse energies at other wavelengths.
- ³⁾ Measured at 280 nm for SH and 200 nm for DUV.
- ⁴⁾ Measured at 1000 nm for PG411 units, 1620 nm for PG511, and 3000 nm for PG711 units.

- ⁵⁾ Measured at 10000 nm.
- <2 cm⁻¹ in signal (420-709 nm) and <4 cm⁻¹ in idler (710-2300 nm).
- ⁷⁾ Estimated FWHM assuming pump pulse duration 30 ps at 1064 nm for PG411 and PG511 units, and 90 ps at 1064 nm for PG711 units.
- 8) Beam diameter is measured at 1/e² level and can vary depending on the pump pulse energy.
- ⁹⁾ Full angle measured at FWHM level.

PGx11 SERIES

SPECIFICATIONS ¹⁾

Model	PG411	PG411-SH	PG411-SH-DUV	PG511-DFG	PG711	PG711-DFG	
PUMP LASER REQUIR	EMENTS						
Recommended pump source	P1/2/3 A + AP1/2 UU - 1 KAIN - H41 P1/2 UU - 1 KAIN - H41 P1/2 IA						
Min. pump energy or po	ower ¹⁰⁾						
at 1064 nm	-		2 mJ	(10 mJ)	Eml	at 1 kHz	
at 532 nm		-		5 mJ (8 mJ)	נוח כ		
at 355 nm		5 mJ (10 mJ)		-		
Pulse duration ¹¹⁾			30 ps		9	0 ps	
Bream polarization at pump wavelength		vertical horizontal					
Beam size ¹²⁾		7 mm 2.5 mm					
Beam divergence	< 0.5 mrad						
Beam profile			homogeneou	us, without hot spots			
PHYSICAL CHARACTE	RISTICS						
Size (W × L × H)	456 × 1026 × 244 mm 456 × 1226 × 244 mm PL2231: 456 × 1026 × 244 mm 456 × 1026 × 244 mm H500-APL2100-TRAIN: 456 × 1026 × 244 mm					456 × 1026 × 244 mm	
OPERATING REQUIRE	MENTS						
Room temperature			1	5-30 °C			
Room temperature stability	± 2 °C						
Power requirements	100–240 V single phase, 47–63 Hz						
Power consumption	< 300 W						

 The first number represents pulse train energy or power, while the value in brackets represents single pulse energy. At FWHM level. Inquire for other available pulse duration options.
 Beam diameter measured at 1/e² level.

RECOMMENDED UNITS ARRANGEMENT ON OPTICAL TABLE

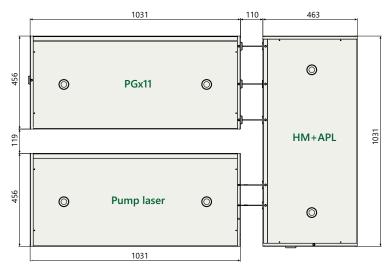


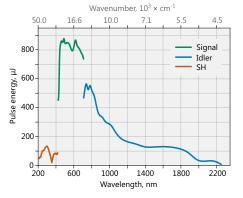
Fig 1. Arrangement of pump laser and PGx11 unit on optical table

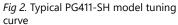
%EKSPLA

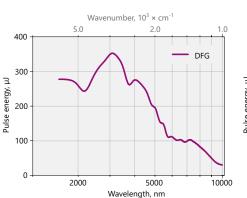
PICOSECOND TUNABLE SYSTEMS

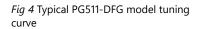
PGx11 SERIES

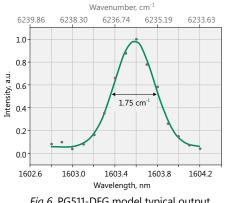
TUNING CURVES

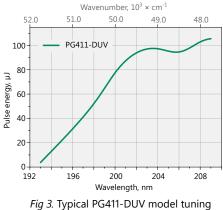

Note: The energy tuning curves


are affected by air absorption


due narrow linewidth. These pictures present pulse energies


where air absorption is


negligible.



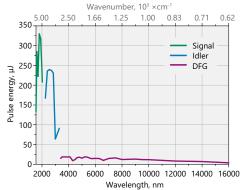
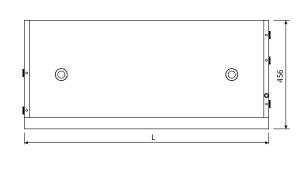
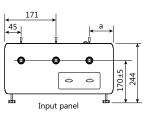
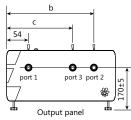


Fig 6. PG511-DFG model typical output linewidth

curve


Fig 5. Typical PG711-DFG model tuning curve. *Pump energy: 2.5 mJ at 1064 nm, 1 kHz repetition rate*


Nanosecond Lasers


Femtosecond Lasers

PGx11 SERIES

OUTLINE DRAWINGS

Fig 7. PG411 model external dimensions

OUTPUTS PORTS

Model	L, mm	a, mm	b, mm	c, mm	Port 1	Port 2	Port 3
PG411	1026	×	411	×	420–709 nm, 710–2300 nm	420–709 nm, 710–2300 nm	_
PG411-SH	1226	×	411	×	420–709 nm, 710–2300 nm	210–419 nm, 420–709 nm, 710–2300 nm	-
PG411-SH/DUV	1226	235	411	331	420–709 nm, 710–2300 nm	210–419 nm, 420–709 nm, 710–2300 nm	192–209.95 nm

ORDERING INFORMATION

Note: Laser must be		
connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.	Model PG411 → ps 355 nm pump PG511 → ps 532 nm pump PG711 → ps 1064 nm pump	Optional tuning range extensi SH (PG411) \rightarrow 210-420 SH/DUV (PG411) \rightarrow 193-420 DFG (PG511) \rightarrow 2300-10 DFG (PG711) \rightarrow 3350-16

PGx11-SH

nal tuning range extension								
G411)	→ 210–420 nm							
JV (PG411)	→ 193–420 nm							
PG511)	→ 2300-10000 nm							
PG711)	→ 3350–16000 nm							

PICOSECOND TUNABLE SYSTEMS

PGx01 • PGx03 • PGx11 • PT277

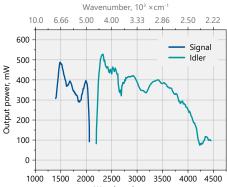
PT277 SERIES

PT277 series laser systems integrate a picosecond optical parametric oscillator and DPSS pump laser into a single compact housing. Mounting the components into one frame provides a cost-effective and robust solution with improved long-term stability and reduced maintenance costs.

The tuning range is for the model PT277 1400 – 2050 and 2200 to 4450 nm with nearly Fourier transform limited linewidth. The microprocessor-controlled wavelength tuning is fully automatic. The wavelength controlling elements are mounted on precise micro-stepping motors. The temperature of the non-linear crystal is controlled by a precise thermocontroller with a bidirectional Peltier element, resulting in the fast tuning of crystal temperature. For customer convenience the system can be controlled through its USB type PC interface (RS232 is optional) with LabView[™] drivers or a remote control pad. Both options allow easy control of system settings.

Single Housing NIR-IR Range Tunable Picosecond Laser

FEATURES


- 1400–4450 nm tuning range
- Nearly Fourier transform-limited linewidth
- Nearly diffraction limited divergence
- Output wavelength monitoring (optional)
- ► PC control via USB (RS232 is optional) and LabView[™] drivers

APPLICATIONS

- ▶ Infrared microscopy
- Infrared spectroscopy

TUNING CURVES

Fig 1. Typical output power of PT277 tunable laser. The power is shown only at the wavelengths where ambient air absorption is negliglible

Picosecond Lasers

Other Ekspla Products

SPECIFICATIONS ¹⁾

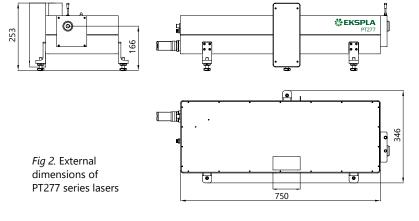
Model	PT277		
Pulse repetition rate ²⁾	87 MHz		
Tuning range			
Signal	1400 – 2050 nm		
ldler	2200 – 4450 nm		
Output power ³⁾			
OPO/OPG ⁴⁾	> 500 mW		
Linewidth 4)	< 1 cm ⁻¹		
Typical pulse duration ^{4) 5)}	70 ps		
Scanning step			
Signal	0.1 nm		
Idler	0.1 nm		
Polarization			
Signal beam	horizontal		
Idler beam	horizontal		
Typical beam diameter ^{4) 6)}	~2 mm		
Typical beam diameter, Idler ^{4) 6)}	~5 mm		
Typical beam divergence ^{4) 7)}	< 2 mrad		
PHYSICAL CHARACTERISTICS			
Unit size (W \times L \times H)	370 × 800 × 260 mm		
Power supply size (W \times L \times H)	520 × 500 × 290 mm		
Umbilical length	2 m		
OPERATING REQUIREMENTS			
Cooling	water-air		
Room temperature	22 ± 2 °C		
Relative humidity	20 – 80 % (noncondensing)		
Power requirements	100 – 240 V AC, single phase 50/60 Hz		
Power consumption	< 1 kVA		

¹⁾ Due to continuous improvement, all specifications are subject to change without notice. Parameters marked 'typical' are indications of typical performance (not specifications) and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options.

²⁾ Inquire for custom pulse repetition rates.

Output powers are specified at selected wavelengths. See typical tuning curves for power at other wavelengths.

OUTLINE DRAWINGS


Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

- Pulse duration can vary depending on 5) wavelength and pump energy.
- $^{\rm 6)}$ $\,$ Beam diameter at the 1/e² level and can vary depending on the pump pulse energy.
- 7) Full angle measured at the FWHM level.

***EKSPLA**

Femtosecond Lasers

Picosecond Lasers

Picosecond Tunable Systems

Nanosecond Lasers

Short pulse duration, wide range of customization options and high stability are distinctive features of EKSPLA nanosecond lasers. Employing latest achievements in laser technologies, team of dedicated engineers designed wide range of products tailored for specific applications: from compact, simple and robust DPSS NL200 series lasers for OEM manufacturers to high energy customized flash-lamp or diode pumped multijoule systems for research laboratories.

The laser can be controlled from remote control pad with backlit display that is easy to read even while wearing laser safety glasses. Alternatively, the laser can be operated also from personal computer using supplied LabVIEW[™] drivers. Second (532 nm), third (355 nm), fourth (266 nm) and fifth (213 nm) (where available) harmonic options combined with various accessories and customization possibilities make these lasers well suited for many OEM and laboratory applications like OPO, OPCPA, Ti:Sapphire and dye laser pumping, spectroscopy, remote sensing, plasma research ...

SHORT SELECTION GUIDE

For Your convenience, table contains all available options and highest parameter values. Not all output specifications are available at the same time simultaneously. Please refer to the catalog page for exact specifications and available options.

Model	Max. pulse energy at fundamental wavelength	Repetition rate, up to	Pumping	Pulse duration	Special feature	Page
NL200	4 mJ at 1064 nm	10 – 2500 Hz	Diode pumped solid state	<10 ns	Compact and robust	48
NL210	10 mJ at 1064 nm	1000 Hz	Diode pumped solid state	3–4 ns	High pulse energy at kHz repetition rate	51
NL230	150 mJ at 1064 nm	100 Hz	Diode pumped solid state	2–5 ns	Diode pumped only	54
NL300	1200 mJ at 1064 nm	20 Hz	Flash-lamp pumped	3–6 ns	Versatile, compact nanosecond laser	57
NL740	100 mJ at 1064 nm	100 Hz	Diode pumped solid state	3–10 ns	Providing superior pulse temporal and spatial stability	64
NL120	up to 10 J at 1064 nm	10 Hz	Diode pumped oscillator, flash-lamp pumped amplifier	~2 ns	SLM	112
NL310	up to 10 J at 1064 nm	10 Hz	Flash-lamp pumped	4–7 ns	Hat-top beam profile	115
NL940	up to 10 J at 1064 nm	10 Hz	Flash lamp pumped amplifiers	3–10 ns	Temporal pulse shaping	118
NL941 NL942	up to 2 J	up to 20 kHz	Diode pumped	~5 ns	Temporal pulse shaping	125

※EKSPLA

NL200 • NL210 • NL230 • NL300 • NL740

NL200 SERIES

BENEFITS

- Continuous tuning of repetition rate while maintaining constant pulse energy, superior beam pointing and energy stability make the NL200 the first choice for micromachining, marking and thin film removal applications
- Close to Gaussian smooth beam profile with low value M² < 1.3 and good focusability are beneficial for applications such as LCD pixel repair
- Easy to transport and saves on valuable laboratory space due to compact and light design

- Fast wavelength selection is superior for applications where alternating wavelengths are required, like material ablation and LIBS
- Air cooling, cost-effective and reliable end-pumping technology and amplifier-free DPSS design guarantee easy operation and alignment simple installation and low maintenance costs
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with laboratory or OEM equipment

NL200 series DPSS Q-switched nanosecond lasers offer high pulse energy at kHz repetition rates. End-pumped design makes this laser compact and easy to integrate. Harmonic generation modules for 532 nm, 355 nm, 266 nm and 213 nm wavelengths are easily attached to the laser frame.

Featuring short pulse duration, variable repetition rate and external TTL triggering, nanosecond diode pumped NL200 series Q-switched lasers are excellent cost effective sources for specific applications like pulsed laser deposition, ablation through mask or intravolume marking of transparent materials, when higher pulse energy is required. Excellent energy stability and a wide range of wavelength options make this laser a perfect tool for spectroscopy and remote sensing applications.

Mechanically stable and hermetically sealed design ensures reliable operation and long lifetime of laser components.

Compact Q-switched DPSS Lasers

FEATURES

- Up to 4 mJ pulse energy at 1064 nm
- Up to 2500 Hz variable repetition rate
- 532 nm, 355 nm, 266 nm, 213 nm wavelengths as standard options
- <10 ns pulse duration at 1064 nm
- Electro-optical Q-switching
- Turn-key operation
- Rugged sealed cavity
- Extremely compact size
- Simple and robust
- Air cooled
- External TTL triggering
- ▶ Remote control via keypad and/or PC with supplied LabVIEW™ drivers
- Remote control pad

APPLICATIONS

- ► Material processing
- LCD repair
- Marking
- Micromachining
- Engraving
- Laser deposition
- ▶ Laser cleaning
- Ablation
- Spectroscopy
- OPO pumping
- Remote sensing

Picosecond Lasers

Other Ekspla Products

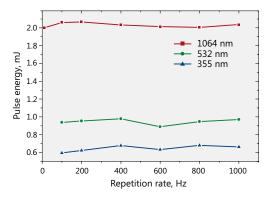
NL200 SERIES

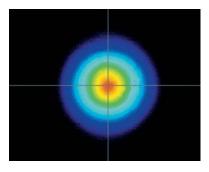
SPECIFICATIONS ¹⁾

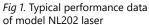
Model	NL201 ²⁾	NL202 ³⁾	NL204 ³⁾		
Pulse energy					
at 1064 nm	0.9 mJ	2.0 mJ	4.0 mJ		
at 532 nm	0.3 mJ	0.9 mJ	2.0 mJ		
at 355 nm	0.2 mJ	0.6 mJ	1.3 mJ		
at 266 nm	0.08 mJ	0.2 mJ	0.6 mJ		
at 213 nm	0.04 mJ	0.1 mJ	0.2 mJ		
Pulse to pulse energy stability (StdDev) ⁴⁾					
at 1064 nm		<0.5 %			
at 532 nm		<2.5 %			
at 355 nm		<3.5 %			
at 266 nm		<4.0 %			
at 213 nm		<5.0 %			
Typical pulse duration ⁵⁾		7 – 10 ns			
Power drift 6)		± 2 %			
Pulse repetition rate	10-2500 Hz	10-1000 Hz	500-1000 Hz		
Beam spatial profile	Close to Gaussian in near and far fields				
Ellipticity	0.9–1.1 at 1064 nm				
M ²		<1.3			
Beam divergence ⁷⁾		<3 mrad			
Polarization		linear			
Typical beam diameter ⁸⁾		0.7 mm			
Beam pointing stability (StDev) 9)		≤10 µrad			
Optical jitter (StdDev) ¹⁰⁾		<0.5 ns			
PHYSICAL CHARACTERISTICS					
Laser head (W \times L \times H) ¹¹⁾		164 × 320 × 93 mm			
Power supply unit ($W \times L \times H$)		365 × 415 × 290 mm			
Umbilical length		303 × 413 × 230 mm			
Unblication		5 111			
OPERATING REQUIREMENTS					
Cooling		air cooled			
Ambient temperature	18–30 °C				
Realtive humidity	20-80 % (non-condensing)				
Power requirements	100–240 V AC, single phase, 50/60 Hz				
Power consumption		<600 W			
Due to continuous improvement, all specifications are subject to change.	⁶⁾ Measured over 8 hour period warm-up when ambient temp		DANICER		

- be to continuous improvement, an specifications are subject to change. Parameters marked typical are illustrative; they are indications of typical performance and will vary with each unit we manufacture. Unless stated other wise all specifications are measured at 1064 nm and for basic system without options.
- ²⁾ Unless stated otherwise all specifications are measured at 2500 Hz pulse repetition rate.
- ³⁾ Unless stated otherwise all specifications are measured at 1000 Hz pulse repetition rate.
- ⁴⁾ Averaged from pulses emitted during 30 sec time interval.
- ⁵⁾ FWHM at 1064 nm.

- ⁶⁾ Measured over 8 hour period after 20 min warm-up when ambient temperature variation is less than ±2 °C.
- $^{7)}\,$ Full angle measured at the 1/e² level at 1064 nm.
- $^{\rm 8)}$ Beam diameter is measured at 1064 nm at the $1/e^2$ level.
- Beam pointing stability is evaluated as movement of the beam centroid in the focal
- plane of a focusing element.¹⁰⁾ With respect to QSW IN or SYNC OUT pulse.
- ¹¹⁾ Without optional harmonic module.


Femtosecond Lasers




NL200 SERIES

PERFORMANCE

OUTLINE DRAWINGS

Fig 2. Typical beam intensity profile in the far field



Fig 3. NL202 laser head drawing

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NL201-H200SHC

Model	Harmonic generator options: H200SHC \rightarrow second harmonic
	H200THC \rightarrow third harmonic
	H200FHC \rightarrow fourth harmonic
	H200FiHC \rightarrow fifth harmonic

Picosecond Lasers

Picosecond Tunable Systems

NL200 • NL210 • NL230 • NL300 • NL740

NL210 SERIES

BENEFITS

- High 10 mJ pulse energy and nanosecond pulse-width ensures strong nonlinear response
- Smooth beam profile with optimal M² value suitable for OPO pumping
- 1 kHz repetition rate enables fast material processing and data collection
- Air cooling, cost-effective and reliable end-pumping technology and amplifier-free DPSS design guarantee easy operation and alignment, simple installation and low maintenance costs
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with laboratory or OEM equipment

NL210 series diode pumped Q-switched lasers produce up to 10 mJ at 1000 Hz pulse repetition rate. The laser is designed to produce high intensity, high brightness pulses and is targeted for applications like OPO pumping, nonlinear spectroscopy, material ablation, micromachining, and other tasks.

Employing electro-optical type of the cavity dumping, the master oscillator can produce pulses with a short pulse duration of 3 - 4 ns, the uniform beam profile and low divergence. The M² factor of 3 - 4and uniform beam profile is useful for OPO pumping. Angle-tuned LBO and/or BBO crystals mounted in temperature stabilized heaters are used for optional second, third or fourth harmonic generation. The harmonic separation system is designed to ensure a high spectral purity of radiation directed to separate output ports.

For customer convenience the laser can be controlled from a remote control pad or PC. The remote pad allows easy control of all parameters and features a backlit display that is easy to read even wearing laser safety eyewear. Alternatively, the laser can be controlled from a personal computer with supplied software for a Windows[™] operating system, LabVIEW[™] drivers are supplied as well. High Energy kHz Pulsed Cavity Dumped DPSS Nd:YAG Lasers

FEATURES

- 10 mJ at 1064 nm
- 1 kHz pulse repetition rate
- ► All-solid-state design
- Internal/external triggering
- Short warm-up time
- ► Air cooled
- Optional temperature stabilized second, third and fourth harmonic generators
- ▶ Remote control via keypad or PC with supplied LabVIEW™ drivers

APPLICATIONS

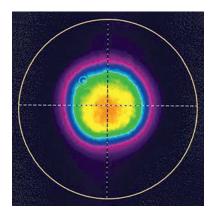
- ▶ OPO pumping
- Laser spectroscopy
- Remote sensing
- Material ablation
- Micromachining

Picosecond Tunable Systems

51

NL210 SERIES

SPECIFICATIONS ¹⁾


Model	NL210		
MAIN SPECIFICATIONS			
Pulse energy:			
at 1064 nm	10 mJ		
at 532 nm ²⁾	5 mJ		
at 355 nm ³⁾	3 mJ		
at 266 nm ⁴⁾	1 mJ		
Pulse to pulse energy stability ⁵⁾			
at 1064 nm	< 1.0 % rms		
at 532 nm ²⁾	< 2.0 % rms		
at 355 nm ³⁾	< 2.5 % rms		
at 266 nm 4)	< 4.0 % rms		
Pulse duration 6)	3 – 4 ns		
Pulse repetition rate	1000 Hz		
Beam profile	multimode		
Elipticity	0.9 – 1.1 at 1064 nm		
M ²	< 4		
Beam divergence ⁷⁾	< 2 mrad		
Beam pointing stability, StDev	< 50 µrad		
Polarization	linear, > 95 %		
Typical beam diameter ⁸⁾	2 mm		
Pulse jitter wrt to SYNC OUT, StDev 9)	< 0.5 ns		
Pulse jitter wrt to ext. trigger, StDev ¹⁰⁾	< 0.5 ns		
PHYSICAL CHARACTERISTICS			
Laser head (W \times L \times H)	456 × 1031 × 260 mm		
Power supply unit (W \times L \times H)	520 × 400 × 290 mm		
Umbilical length	3 m		
OPERATING REQUIREMENTS			
Cooling ¹¹⁾	Built-in chiller		
Ambient temperature	18–27 °C		
Relative humidity	20-80 % (non-condensing)		
Power requirements	100–240 V AC, single phase, 50/60 Hz		
Power consumption	< 1 kVA		

- specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options.
- $^{\scriptscriptstyle 2)}$ $\,$ For NL210 with -SH option. Outputs are not simultaneous.
- ³⁾ For NL210 with -SH/TH option. Outputs are not simultaneous.
- For NL210 with -SH/FH option. Outputs are not 4) simultaneous.
- time interval.
- 6) FWHM.
- $^{7)}$ $\,$ Full angle measured at the 1/e^2 point at 1064 nm.
- ⁸⁾ Beam diameter is measured at 1064 nm at the 1/e² point.
- ⁹⁾ Optical pulse jitter with respect to SYNC OUT in internal triggering mode.
- ¹⁰⁾ Optical pulse jitter with respect to QSW IN in external triggering mode.
- ¹¹⁾ Air cooled

NL210 SERIES

PERFORMANCE

Fig 1. Typical near field beam profile of NL210 series laser

OUTLINE DRAWINGS 170 266 105 *EKSPLA ¢ 213 22 * i 594 218.5 1031 456 0 0

Fig 2. NL210 series laser head dimensions

ORDERING INFORMATION

Note: Laser must be
connected to the mains
electricity all the time. If there
will be no mains electricity for
longer that 1 hour then laser
(system) needs warm up for a
few hours before switching on.

NL210-SH

Model	Harmor SH SH/TH SH/FH	hic generator options: \rightarrow second harmonic \rightarrow third harmonic \rightarrow fourth harmonic

NL200 • NL210 • NL230 • NL300 • NL740

NL230 SERIES

BENEFITS

- Short duration pulses (2 4 ns) ensures strong interaction with material and are highly suitable for LIBS
- User selectable wavelength single axis output is superior for experiments where alternating wavelengths are required such as material ablation and LIBS

material ablation and LIBSThe NL230 series diode-pumpedfeQ-switched lasers produce up toco150 mJ at 100 Hz or up to 190 mJ atb50 Hz pulse repetition rate. Diodepumping allows maintenance-freeulaser operation for an extendednperiod of time (more than 3 years forre

is more than 1 billion shots. Lasers are designed to produce high-intensity, high-brightness pulses and are targeted for applications such as LIBS, material ablation, remote sensing, OPO pumping. Due to an electro optical Q-switch, the master oscillator generates short duration pulses in the 2–4 ns range. The oscillator cavity optical design

an estimated eight working hours per

day). The typical pump diode lifetime

- Rugged, monolithic design enables usage in harsh environments
- Diode pumped design provides quiet operation and eliminates flashlight irritation
- Variety of interfaces: USB, RS232, LAN and WiFi ensures easy control and integration with other equipment

features a variable reflectivity output coupler, giving a low-divergence laser beam.

A closed-loop air-cooled chiller is used for laser cooling, eliminating the need for external cooling water and reducing running costs.

Angle-tuned non-linear crystals mounted in temperature stabilized heaters are used for optional second or third harmonic generation. The harmonic separation system is designed to ensure radiation with a high spectral purity and to direct it to the separate output ports.

For customer convenience the laser can be controlled via a remote control pad or PC. The remote pad allows easy control of all parameters

High Energy Q-switched DPSS Nd:YAG Lasers

FEATURES

- Diode-pumped
- Rugged sealed laser cavity
- Up to 190 mJ at 1064 nm pulse energy
- Up to 100 Hz pulse repetition rate
- Short pulse duration in the 2–4 ns range
- Variable reflectivity output coupler for low-divergence beam
- Quiet operation: no more flashlamp firing sound
- Remote control via keypad and/or PC with supplied LabVIEW™ drivers
- Optional temperature-stabilized second and third harmonic generators

APPLICATIONS

- LIBS (Light Induced Breakdown Spectroscopy)
- Material ablation
- OPO pumping
- Remote Sensing
- LIDAR (Light Detection And Ranging)
- Mass Spectroscopy
- ▶ LIF (Light Induced Fluorescence)

and features a backlit display that is easy to read even through laser safety eyewear. Alternatively, the laser can be controlled from a personal computer via supplied Windows[™] compatible software. LabVIEW[™] drivers are also included with each laser installation package.

Picosecond Lasers

High Intensity Lasers

Other Ekspla Products

NL230 SERIES

SPECIFICATIONS ¹⁾

Model	NL231-50	NL231-100		
Pulse energy (not less than) ²⁾				
at 1064 nm	190 mJ	150 mJ		
at 532 nm ³⁾	110 mJ	90 mJ		
at 355 nm 4)	55 mJ	40 mJ		
Pulse energy stability (StdDev) 5)	· · · · · · · · · · · · · · · · · · ·			
at 1064 nm	<1%			
at 532 nm	< 2.5 %			
at 355 nm	< 3.5 %			
Pulse repetition rate	50 Hz	100 Hz		
Power drift 6)	< ±1 %			
Pulse duration ⁷⁾	2 – 4 ns			
Linewidth	< 1 cm ⁻¹ at 1064	4 nm		
Beam profile ⁸⁾	"Top Hat" in near field and close	to Gaussian in far field		
Beam divergence ⁹⁾	< 0.8 mrad			
Beam pointing stability (StDev) 10)	≤ 60 μrad			
Polarization	linear, > 95 % at 1064 nm			
Typical beam diameter ¹¹⁾	5 mm			
Optical pulse jitter (StDev)				
Internal triggering regime ¹²⁾	< 0.5 ns			
External triggering regime ¹³⁾	< 0.5 ns			
SYNC OUT pulse delay	-100 ms 100 ms			
Typical warm-up time	10 min			
PHYSICAL CHARACTERISTICS				
Laser head size ($W \times L \times H$)	251 × 291 × 167 ±	3 mm		
Power supply unit ($W \times L \times H$)				
Desktop case	471 × 391 × 147 mm	± 3 mm		
19" module	483 × 355 × 133 mm			
External chiller	inquire			
Umbilical length	2.5 m			
OPERATING REQUIREMENTS	1			
Cooling (air cooled) ¹⁴⁾	external chill	or		
Ambient temperature	18–27 °C			
Relative humidity (non-condensing)	20-80 %			
Power requirements	100–240 V AC, single ph	ase 50/60 Hz		
Power consumption	<1.0 kVA			

- ¹⁾ Due to continuous improvement, all specifications are subject to change. The parameters marked typical may vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 1064 nm and for basic system without options.
- ²⁾ Outputs are not simultaneous. Inquire for higher energy (up to 350 mJ at 50 Hz, 250 mJ at 100 Hz) custom models.
- ³⁾ With H230SHC or H230STHC harmonic generator module.
- 4) With H230THC or H230STHC generator modules.
- ⁵⁾ Averaged from pulses, emitted during 30 sec time interval.
- ⁶⁾ Measured over 8 hours period after 20 min warm-up when ambient temperature variation is less than ± 2 °C.
- 7) FWHM.
- $^{\rm 8)}\,$ Near field (at the output aperture) TOP HAT fit is >80%.
- ⁹⁾ Full angle measured at the 1/e² level.

- Beam pointing stability is evaluated as movement of the beam centroid in the focal plane of a focusing element.
- ¹¹⁾ Beam diameter is measured at 1064 nm at the $1/e^2$ level.
- ¹²⁾ With respect to SYNC OUT pulse.
- ¹³⁾ With respect to QSW IN pulse.
- ¹⁴⁾ Adequate room air conditioning should be provided.

Notes: The laser and auxiliary units must be settled in such a place void of dust and aerosols. It is advisable to operate the laser in air conditioned room, provided that the laser is placed at a distance from air conditioning outlets. The laser should be positioned on a solid worktable. Access from one side should be ensured. Intensive sources of vibration should be avoided near the laboratory (ex. railway station or similar).

55

NL230 SERIES

PERFORMANCE

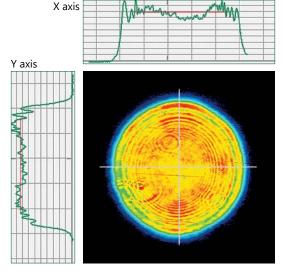


Fig 1. NL230 laser typical near field beam profile

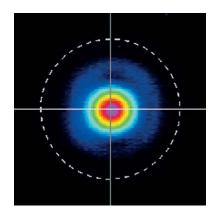
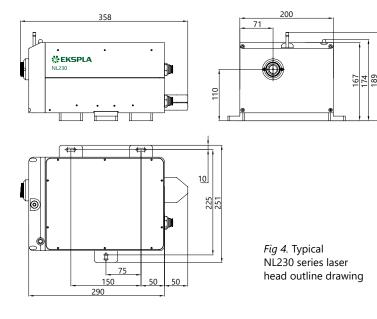
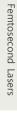



Fig 2. NL230 laser typical far field beam profile

Measure	P1.ddelay	P2.width	P3.area	T					inder Strengt	-
/alue	72.011 ns	5.507 ns	2.358455 mVs	1		-				-
mean	72.044 ns	5.482 ns	2.355738 mVs	 -	-		A	-		-
min	71.456 ns	5.167 ns	2.277066 mVs	 ļ			1-11			
max	72.552 ns	5.970 ns	2.409653 mVs							
sdev	156.11 ps	81.27 ps	16.89196 pVs			-		Lan		
num	4.697 × 10 ³	4.697 × 10 ³	4.697 × 10 ³	1.444		100000	1	31		

Fig 3. NL230 laser pulse waveform


OUTLINE DRAWINGS

ORDERING INFORMATION

NL231-H230THC				
Model	Optional harmonic generator modules			

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Picosecond Lasers

NL200 • NL210 • NL230 • NL300 • NL740

NL300 SERIES

BENEFITS

- High pulse energy (up to 1.2 J at 1064 nm, 450 mJ at 355 nm) ensures strong interaction with material which is excellent for LIBS and material ablation applications
- Cost-effective, single-cavity design with no amplifiers for easy alignment, high reliability and low maintenance costs
- Small size saves valuable space in the laboratory room

- Fast flashlamp replacement without realignment of laser cavity ensures easy maintenance
- Air cooling enables simple installation, easy operation and low maintenance costs
- Variety of interfaces: USB, RS232, LAN and WiFi ensures easy integration with other equipment

NL300 series electro-optically Q-switched nanosecond Nd:YAG lasers produce high energy pulses with 3–6 ns duration. Pulse repetition rate can be selected in range of 5–20 Hz. NL30×HT models are designed for maximum energy extraction from the active element. Up to 1200 mJ pulse energy can be produced at a 5 Hz pulse repetition rate.

A wide range of harmonic generator modules for generation up to a 5th harmonic is available. Harmonic generators can be combined with attenuators that allow smooth output energy adjustment without changing other laser parameters, i.e. pulse duration, pulse-to-pulse stability, divergence or beam profile. For a more detailed description of harmonic and attenuator modules please check our harmonic generators selection guide on the page 59.

The extremely compact laser head is approximately 480 mm long and can be fitted into tight spaces. The laser power supply has a 330 × 490 mm footprint. Easy access to the water tank from the back side of the power supply facilitates laser maintenance. Replacement of flashlamp does not require removal of pump chamber from the laser cavity and does not lead to possible misalignment.

The powering unit can be configured with water-to-water or water-to-air heat exchangers. The latter option allows for laser operation without the use of tap water for cooling.

Compact Flash-Lamp Pumped Q-switched Nd:YAG Lasers

FEATURES

- Rugged sealed laser cavity
- ▶ Up to 1200 mJ pulse energy
- Better than 1 % StDev pulse energy stability
- ▶ 5-20 Hz pulse repetition rate
- 3–6 ns pulse duration
- Thermo stabilized second, third, fourth and fifth harmonic generator modules
- Optional attenuators for fundamental and/or harmonic wavelengths
- Water-to-water or water-to-air cooling options
- Replacement of flashlamps without misalignment of laser cavity
- Remote control via keypad and/or RS232/USB port

APPLICATIONS

- Material ablation
- LIBS (Light Induced Breakdown Spectroscopy)
- OPO pumping
- Remote Sensing
- LIDAR (Light Detection And Ranging)
- Mass Spectroscopy
- LIF (Light Induced Fluorescence)

For customer convenience the laser can be controlled via PS with LabView[™] drivers (included) or a remote control pad. Both options allow easy control of laser settings.

****EKSPLA**

NL300 SERIES

SPECIFICATIONS 1)

Model	NL3	03HT	NL3(05HT	
Pulse repetition rate	10 Hz	20 Hz	5 Hz 10 Hz		
Pulse energy:		11		1	
at 1064 nm	800 mJ	700 mJ	1200 mJ	1100 mJ	
at 532 nm ²⁾	380 mJ	320 mJ	700 mJ	500 mJ	
at 355 nm ³⁾	250 mJ	210 mJ	450 mJ	320 mJ	
at 266 nm ⁴⁾	80 mJ	60 mJ	120 mJ	100 mJ	
at 213 nm ⁵⁾	13 mJ	10 mJ	25 mJ	20 mJ	
Pulse energy stability (StdDev) ⁶⁾	10 110	10 110		20113	
at 1064 nm		19	%		
at 532 nm		1.5	-		
at 355 nm		3.9			
at 266 nm		3.5			
at 213 nm		6.0			
Power drift ⁷⁾		±2			
Pulse duration ⁸⁾		±2 3-6			
Polarization	vertica	l, >90 %	vertical, >90 %	vertical, >65 %	
Optical pulse jitter ⁹⁾		<0.5 n			
Linewidth		<1 c			
Beam profile ¹⁰⁾		Hat-Top in near and nea			
Typical beam diameter ¹¹⁾	~8	mm		mm	
Beam divergence ¹²⁾		<0.6 ו			
Beam pointing stability ¹³⁾		50 µra	d rms		
Beam height		68 r	nm		
PHYSICAL CHARACTERISTICS					
Laser head size (W \times L \times H) ¹⁴⁾		154 × 475	× 128 mm		
Power supply unit (W \times L \times H)		330 × 490	-		
Umbilical length		2.5			
-		2.5			
OPERATING REQUIREMENTS					
Water consumption (max 20 °C) ¹⁵⁾	<8 l/min	<12 l/min	<6 l/min	<10 l/min	
Ambient temperature		15–3	0 °C		
Relative humidity		20-80 % (non	-condensing)		
Power requirements ^{16) 17)}		208–240 V AC, sing	gle phase 50/60 Hz		
Power consumption ¹⁸⁾	<1 kVA	<1.5 kVA	<1 kVA	<1.5 kVA	
Due to continuous improvement, all specifications are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical	 Averaged from pulses, en time interval. Measured over 8 hours p warm-up when ambient is less than ±2 °C. 	period after 20 min		DANGER VISIBLE AND/CR INVISIBLE LASER RA AVDID FVE OR SKIN EXPOSIBLE TO DI REFLECTED OR SCATTERED BADANCO NAVXAG 1004 mm, 532 nm 335 nm	
 performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 1064 nm and for basic system without options. With H300SH, H300S or H300SHC harmonic generator modules. See harmonic generator selection guide on the page 59 for more detailed information. With H300THC, H300STH and H300ST harmonic generator modules. See harmonic generator selection guide on the page 59 	 FWHM. Relative to SYNC OUT print field (at the output fit is >70%. Beam diameter is measured at the field of the search of the sear	aperture) TOP HAT red at 1064 nm at the ne 1/e ² level.		266 nm, 213 nm, Max, 1220 mL, pulse CLASS IV LASER PRODUCT	

- ⁴⁾ With H300SH and H400FHC harmonic generator modules. See harmonic generator selection guide on the page 59 for more detailed information.
- ⁵⁾ With H300FiHC harmonic generator module. See harmonic generator selection guide on the page 59 for more detailed information.

- ¹⁷⁾ 110 V AC powering is available, please inquiry for details.
- does not require tap water for cooling.
 Power requirements should be specified when ordering.

 $^{\mbox{\tiny 14)}}$ See harmonic generator selection guide on the

page 59 for harmonic generators units sizes.

¹⁵⁾ For water cooled version. Air cooled version

¹⁸⁾ Required current rating can be calculated by dividing power value by mains voltage value.

Other Ekspla Products

OPTIONAL HARMONIC GENERATOR AND ATTENUATOR MODULES

The following are suggested optimal configurations of H300 series modules for various output wavelengths:

1. For 2nd harmonic output only: the H300SHC module.

2. For 2nd and 3rd harmonic:

a) H300SH+H300S+H300THC – for SH and TH output as specified in the NL300 series brochure.

b) H300STH+H300ST – a cost-effective solution not requiring the replacement of modules when changing from a 532 nm to 355 nm beam and vice versa. The 532 nm beam specification will, however, be 15% lower relative to the values in the NL300 series brochure due to extra components in the beam path.

3. For 2^{nd} and 4^{th} harmonic: H300SH+H300S+H300FHC modules.

4. For all harmonic including 4th:

a) H300STH+H300ST+H300FHC – a cost-effective solution. The 266 nm and 532 nm beam specifications will be 15% lower relative to the values in the NL300 series brochure.

NL300 SERIES

b) H300SH+H300S+H300THC+H300FHC – a slightly more expensive solution with output values adhering to those in the NL300 series brochure.

5. For all harmonic including 5th: modules described in paragraph #4 plus the H300FiHC module.

6. For attenuators for all wavelengths up to the 4th harmonic: H300SH+H300A2+H300TH+H300A3+H300A4 modules.

Module	Description	Output ports	Output pulse energy specifications	Dimensions W×L×H, mm	Extension possible?	Notes
H300SH	Second harmonic generator	Port 1: 1064, 532 nm	N/A	154×160×128	Yes	
H300S	532 nm beam separator	Port 1: 532 nm Port 2: residual 1064 nm	See NL300 specifications for 532 nm beam	154×160×128	No	Should be used with H300SH
H300SHC	Second harmonic generator with 532 nm beam separator	Port 1: 532 nm Port 2: residual 1064 nm	See NL300 specifications for 532 nm beam	154×210×128	No	
H300TH	Third harmonic generator	Port 1: 1064, 532 & 355 nm	N/A	154×160×128	Yes	Should be used with H300SH
Н300ТНС	Third harmonic generator with 355 nm beam separator	Port 1: 355 nm Port 2: residual 1064 & 532 nm	See NL300 specifications for 355 nm beam	154×210×128	No	Should be used with H300SH
H300STH	Second and third harmonic generator	Port 1: 1064, 532 & 355 nm	N/A	154×210×128	Yes	
H300ST	355 nm beam separator	Port 1: 355 nm Port 2: residual 532 nm	See NL300 specifications for 355 nm beam	154×160×128	No	Recommended to use with H300STH
H300FHC	Fourth harmonic generator with 266 nm beam separator	Port 1: 266 nm Port 2: residual 532 nm	See NL300 specifications for 266 nm beam	154×290×128	No	Should be used with H300SH
H300FiHC	Fifth harmonic generator with 213 nm beam separator	Port 1: 213 nm Port 2: residual 1064, 532 & 266 nm	See NL300 specifications for 213 nm beam	154×350×128	No	
H300A1	Attenuator for 1064 nm beam	Port 1: 1064 nm beam	Transmission in 5-90% range at 1064 nm	154×210×128	No	
H300A2	Attenuator and beam separator for 532 nm beam	Port 1: 532 nm Port 2: residual 532 nm	Transmission in 5-90% range at 532 nm	154×210×128	No	Should be used with H300SH
H300A3	Attenuator and beam separator for 355 nm beam	Port 1: 355 nm Port 2: residual 355 nm	Transmission in 5-90% range at 355 nm	154×210×128	No	Should be used with H300TH or H300STH
H300A4	Fourth harmonic generator, beam sepa-rator and attenuator for 266 nm beam	Port 1: 266 nm Port 2: residual 266 nm	Transmission in 5-90% range at 266 nm	154×350×128	No	Should be used with H300SH

MODULES SELECTION GUIDE

XEKSPLA

NL300 SERIES

OPTIONS

- Option -AW air-cooled power supply option. An adequate air conditioner should be installed in order to keep room temperature stable.
- Harmonic generator options an extensive selection of harmonic generators up to 5th harmonic.
- Attenuator options allow a smooth change of laser pulse energy, while other laser pulse parameters, such as pulse duration, jitter, pulse-to-pulse stability, beam divergence and profile remain the same.

OUTLINE DRAWINGS

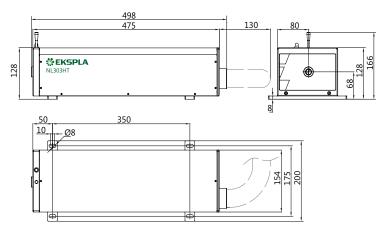


Fig 1. Typical NL300 series laser head outline drawing

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NL303HT-10-AW-H300SH-H300THC

Model Pulse repetition rate in Hz Optional harmonic generator modules and other accessories

Options: AW \rightarrow water-air heat exchanger

NL200 • NL210 • NL230 • NL300 • NL740

HARMONIC GENERATORS

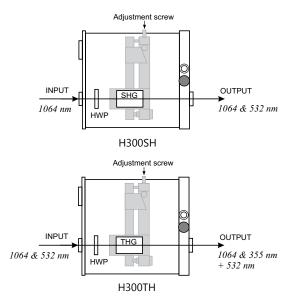
Nanosecond Q-switched lasers enable simple and cost effective laser wavelength conversion to shorter wavelengths through harmonic generation. EKSPLA offers a broad selection of wavelength conversion accessories for NL300 series lasers. The purpose of this guide is to help configure available harmonic generator and attenuator modules for NL300 series lasers for optimal performance.

The harmonic module uses a modular design that allows reconfiguration of laser output for the appropriate experiment wavelength.

A typical module houses a non-linear crystal together with a set of dichroic mirrors for separating the harmonic beam from the fundamental wavelength. Nonlinear crystals used for the purpose of wavelength conversion are kept at an elevated temperature in a thermo-stabilized oven.

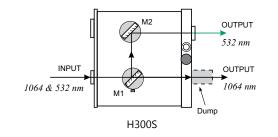
Two or more modules can be joined together for higher harmonic generation: attaching one extra module to a second harmonic generator allows for the generation of 3rd or 4th harmonic wavelengths.

It should be noted that only modules with a single output port can be joined together: it is possible to attach a H300S module to a H300SH unit for 532 nm beam separation, or a H300FHC module for 4th harmonic generation (see detailed description below). Modules with two output ports (e.g., H300SHC) cannot be attached to extra units.


For NL300 Series Lasers

FEATURES

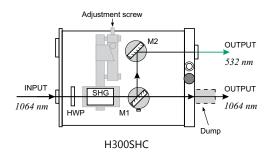
- Compact harmonic modules
- Thermo stabilized crystals for long lifetime
- Dichroic mirrors
- AR coatings on crystals
- Phase matching by mechanical adjustment
- ► High conversion efficiency
- Wide selection of different configurations


H300SH, H300TH harmonic generators

H300SH or H300TH modules contain a SH or TH crystal with a half-wave plate for input polarization adjustment. The output of the H300SH module has both 532 nm and 1064 nm wavelengths; the output of the H300SH+H300TH modules also has a 355 nm wavelength.

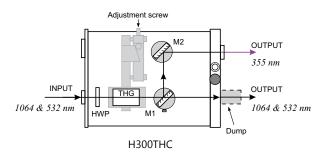
H300S harmonic separator

The H300S module has two output ports for the separation of **1064 nm** and **532 nm** wavelengths.

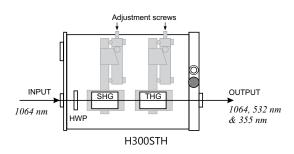


XEKSPLA

NL300 SERIES

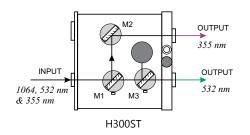

H300SHC harmonic generator

The most cost-effective solution for customers who need a 532 nm wavelength only, the H300 SHC module combines a SHG crystal and beam separators and has two output ports for 532 nm and 1064 nm beams.


H300THC harmonic generator

The H300THC module is a third harmonic generator and beam separator with two output ports for a 355 nm beam, and for a residual 532 nm + 1064 nm beam. This module should be used with the H300SH module.

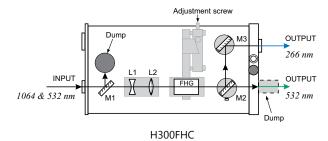
H300STH harmonic generator


The H300STH module combined with a H300ST separator module is designed for customers who need a 355 nm wavelength only. The H300STH module has an output port for 355 nm, 532 nm and 1064 nm wavelengths, the H300ST module has two output ports for 355 nm and 532 nm wavelengths. In order to separate 355 nm this module should be used with H300ST.

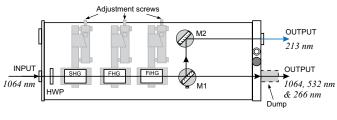
H300ST harmonic separator

H300FiHC harmonic generator

The H300ST module can be used for the separation of 355 nm and/or 532 nm beams from residual 1064 nm, and can be used together with H300STH, H300TH or H300SH modules.


The H300FiHC module is designed to produce a 5th

harmonic output. As it requires only a 1064 nm input, the


unit contains SH, FH and FiH crystals together with a beam

H300FHC harmonic generator

The H300FHC module is a fourth harmonic generator and beam separator for a 266 nm wavelength, with two output ports for a 266 nm beam, and for a residual 532 nm beam. This module should be used with the H300SH module.

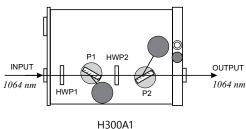
0SH module. separator for a 213 nm beam.

H300FiHC

Picosecond Lasers

ATTENUATORS

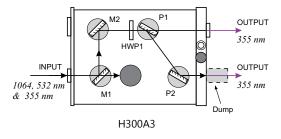
NL300 series lasers offer several options for changing output pulse energy. The easiest option is to change the timing of the Q-switch opening relative to the flashlamp pump pulse. This option is a standard feature for all NL300 series lasers. A change in Q-switch timing, however, changes other laser pulse parameters along with the pulse energy. A decrease in pulse energy results in longer pulse duration, decreased pulse-to-pulse-stability, and possible changes in the spatial beam profile. For applications that require smooth adjustment of output pulse energy while keeping other parameters stable, EKSPLA offers H300Ax series attenuator modules.


For NL300 Series Lasers

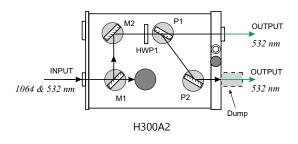
FEATURES

- Compact design
- Motorized version is available
- Smooth adjustment of output pulse energy

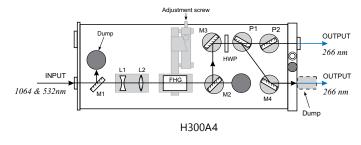
H300A1 attenuator


The H300A1 module is designed to attenuate a **1064** nm beam. Optical layout includes half-wave plates HWP1, HWP2 and polarizers P1, P2 (see picture below). Rotation of the HWP2 half-wave plate changes the polarization of the laser beam and its transmission factor via the P2 polarizer.

Ha


H300A3 attenuator

The H300A3 module, designed to attenuate a 355 nm beam, combines an attenuator with a beam separator and should be used with the H300STH or H300TH modules.


H300A2 attenuator

The H300A2 module, designed to attenuate a 532 nm beam, combines an attenuator with a beam separator and should be used with the H300SH module.

H300A4 attenuator

The H300A4 module is designed to attenuate a **266 nm** beam. It combines a FH crystal, beam separator and attenuator and should be used instead of the H300FHC module for attenuation of a 266 nm beam.

Picosecond Lasers

※EKSPLA

NL200 • NL210 • NL230 • NL300 • NL740

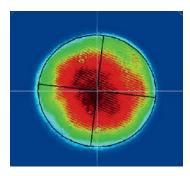
NL740 SERIES

BENEFITS

- Stable SLM pulses make the NL740 suitable for metrology (LIDT), interferometry, holography and DIAL (LIDAR) applications
- Excellent pulse energy and spatial and temporal mode stability ensure high quality experiment statistical data and saves on the cost and time spent for tests and investigation
- High repetition rate (up to 100 Hz) ensures fast acquisition of experiment data
- 3 10 ns tunable pulse duration enables experiments using a wide range of durations; no need to purchase separate lasers for experiments requiring different pulse duration
- Reliable 24/7 operation is excellent for metrology, especially Laser-Induced Damage Threshold (LIDT) applications
- Variety of interfaces: USB, RS232, LAN and WiFi ensures easy integration with other equipment

The main feature of NL740 series is the output of ultra-stable tunable duration (2 – 10 ns) narrow bandwidth nanosecond pulses based on temporally driven CW diode laser seeder and amplification stages.

Start of the system is the single mode DFB laser with temporal output power modulator. Such front-end ensures reliable generation of SLM mode that is highly beneficial for formation of low temporal modulation ultra-stable pulses. Then light is amplified in diode pumped regenerative amplifier in order to reach energy sufficient to amplify in diode pumped amplifiers. Power amplifier is a chain of double pass amplifiers where pulse is amplified up to 100 mJ energy at 100 Hz repetition rate. Before amplification spatial beam shaping is employed in order to get flat top shape at the output. The harmonic generators are based on angle tuned nonlinear crystals placed in a heater. All diode pumped design ensures reliable operation of system at high repetition rates as well as simple and convenient maintenance.


Ultra-stable Nanosecond Laser

FEATURES

- Narrow bandwidth, stable, true SLM pulses
- Excellent pulse energy (typically 0.1 % StDev @ 1064 nm) and pulse duration stability
- Excellent spatial mode stability
- Excellent output power stability (typically < ±0.5 % peak-to-peak)
- 3 10 ns tunable pulse duration
- Up to 100 mJ output energy
- ▶ Up to **100 Hz** repetition rate
- 1064, 532 nm or 355 nm output wavelength
- Reliable 24/7 operation

APPLICATIONS

- Metrology, especially Laser-Induced Damage Threshold (LIDT)
- Front end for power amplifiers
- Interferometry and holography
- Material processing and others

Fig 1. Typical NL740 near field beam profile at 532 nm

Picosecond Lasers

Other Ekspla Products

NL740 SERIES

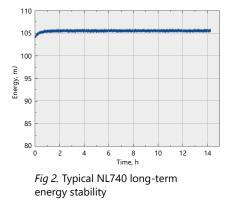
Femtosecond Lasers

Picosecond Lasers

Picosecond Tunable Systems

Nanosecond Lasers

SPECIFICATIONS ¹⁾


Model	NL740	NL742			
Pulse energy (for 5 ns pulse 5)					
at 1064 nm	2 mJ	100 mJ			
at 532 nm ²⁾	NA	50 mJ			
at 355 nm ²⁾	NA	30 mJ			
Pulse energy stability (StdDev) 3)					
at 1064 nm		< 0.5 %			
at 532 nm		< 1.0 %			
at 355 nm		< 1.5 %			
Power drift 4)		± 2 %			
Pulse duration ⁵⁾		3 – 10 ns			
Repetition rate		100 Hz			
Polarization at 1064 nm		vertical, > 98 %			
Optical pulse jitter ⁶⁾		< 150 ps			
Linewidth		<0.1 cm ⁻¹			
Beam profile	Gaussian	Top-Hat (at laser output), without diffraction rings			
Typical beam diameter ⁷⁾	~2 mm	~5 mm			
Beam divergence ⁸⁾	1.0 mrad	0.7 mrad			
Beam pointing stability (StdDev)		< 30 µrad			
PHYSICAL CHARACTERISTICS					
Laser head (W \times L \times H)	456 × 1031 × 249 mm	600 × 1200 × 330 mm			
Power supply unit (W \times L \times H)	85 × 170 × 41 mm	520 × 500 × 210 mm			
Umbilical length	2.5 m	(other length on request)			
OPERATING REQUIREMENTS					
Cooling	air-cooled	air-cooled chiller			
Ambient temperature	stabili	ized; from range 18–25 °C			
Relative humidity	20-	-80 % (non-condensing)			
Power requirements ⁹⁾	100–240 V AC, single phase 50/60 Hz				
Power consumption	< 200 W	< 1.5 kW			
¹⁰ Due to continuous improvement, all specification: to change. Parameters marked typical are illustral indications of typical performance and will vary w we manufacture. Unless stated otherwise, all spec measured at 1064 nm and for basic system withou ²⁰ Harmonic outputs are not simultaneous; only sing	tive; they are time and oscilloscope vith each unit cifications are ut options. 7 Beam diameter is mea	n photodiode with 100 ps rise with 600 MHz bandwidth. lue, measured with respect to asured at 1064 nm at laser			

- ²⁾ Harmonic outputs are not simultaneous; only single wavelength beam is present at the output at once. Manual reconfiguration is required to switch wavelength.
- ³⁾ Standard deviation value averaged from pulses, emitted during 30 sec time interval after 20 minutes of warm-up.
- ⁴⁾ Deviation from average value measured over 8 hours of operation when room temperature variation is less than ±2 °C.
- output at the 1/e² level.
- $^{\scriptscriptstyle 8)}~$ Full angle measured at the 1/e² level at 1064 nm.
- ⁹⁾ Mains voltage should be specified when ordering.
- VISIE ANOF INSIEL LARE AMARTON AGO PYC OS SINI DEPOSIDAE TO DIRECT EFFECTED OS SCATTERED ADANTON NELVACI (DIG Am, S32 nm, 355 nm Max 100 ml, pice a 355 nm CLASS IV LASER PRODUCT

Nanosecond Tunable Lasers

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

PERFORMANCE

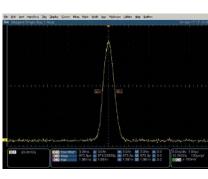


Fig 3. Typical NL740 pulse shape

Integrated pump laser and OPO enable customers to save physical space and reduce maintenance costs. Photo: manufacturing of NT series laser.

6

6

đ

Award winning technologies

Femtosecond Lasers

67

Nanosecond Tunable Lasers

NT series tunable lasers offer tunable, automated wavelength output from UV to IR out of the one small-footprint box. Integrated into a single compact housing, the diode or flash-lamp pumped Q-switched Nd:YAG laser and OPO offer hands-free, no-gap tuning across the specified range.

The output wavelength can be set from control pad with backlit

display that is easy to read even while wearing laser safety glasses. Alternatively, the laser can be controlled also from personal computer using supplied LabVIEW[™] drivers.

Most of the pump lasers do not require water for cooling, thus further reducing running and maintenance costs. A built-in OPO pump energy monitor allows monitoring of pump laser performance without the use of external power meters.

Wide range of available options, accessories and modifications enable to tailor laser to better fit for your requirement. High conversion efficiency, stable output, easy maintenance, robust design and compact size make NT series systems an excellent choice for many applications including laser induced fluorescence, flash photolysis, photobiology, metrology, remote sensing and many others.

In the year 2011 the NT series systems has received the Photonics Oscar – Prism Award for Photonics Innovation in Scientific lasers category.

SHORT SELECTION GUIDE

For Your convenience, table contains all available options and highest parameter values. Not all output specifications are available at the same time simultaneously. Please refer to the catalog page for exact specifications and available options.

Model	Output wavelength range	Repetition rate, up to	Pump laser	Special feature	Page
NT230	192–2600 nm	100 Hz	Diode pumped solid state	High, up to 15 mJ pulse energy from OPO	68
NT242	210–2600 nm	1000 Hz	Diode pumped solid state	Broadly tunable kHz pulsed DPSS lasers	72
NT252	335–2600 nm	1000 Hz	Diode pumped solid state	UV-NIR range DPSS lasers	76
NT270	2500–12000 nm	1000 Hz	Diode pumped solid state	Wide IR tuning range at kHz repetition rate	79
NT342	192–2600 nm	20 Hz	Flash-lamp pump laser	Wide range of modifications to tailor for specific applications	82
NT350	670–2600 nm	20 Hz	Flash-lamp pump laser	High output pulse energy	86
NT370	2 500–18 000 nm	20 Hz	Flash-lamp pump laser	Wide IR tuning range	89
PhotoSonus	660–2300 nm	20 Hz	Diode pumped solid state	Mobile tunable wavelength DPSS laser source	92
PhotoSonus X	665–2 600 nm	100 Hz	Diode pumped solid state	Tunable wavelength NIR range DPSS laser	94

NANOSECOND TUNABLE LASERS

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

NT230 SERIES

BENEFITS

- The system is widely tunable; 192 – 2600 nm and delivers high pulse energy (up to 15 mJ) which allows investigation of an extensive range of materials
- High repetition rate (up to 100 Hz) and output power enable fast data collection and intensive excitation of materials
- Narrow linewidth (down to 3 cm⁻¹) and superior tuning resolution (1 – 2 cm⁻¹) allow recording of high quality spectra
- High integration level saves valuable space in the laboratory

NT230 series lasers deliver high up to 9 mJ energy pulses at 100 Hz pulse repetition rate, tunable over a broad spectral range. Integrated into a single compact housing, the diode pumped Q-switched Nd:YAG laser and Optical Paramteric Oscillator (OPO) offers hands-free, no-gap tuning from 192 to 2600 nm. With its 100 Hz repetition rate, the NT230 series laser establishes itself as a versatile tool for many laboratory applications, as laser induced fluorescence, flash photolysis, photobiology, metrology, remote sensing, etc.

- Diode pumping reduces maintenance frequency
- In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment
- Attenuator and fiber coupling options facilitate incorporation of NT230 systems into various experimental environments

Due to the innovative diode-pumped design, NT230 series lasers feature maintenance-free laser operation for an extended period of time and improved stability (compared with flash-lamp pumped counterparts).

NT230 series systems can be controlled from a remote control pad or/and a computer using supplied LabVIEW[™] drivers. The control pad allows easy control of all parameters and features on a backlit system display that is easy to read even with laser safety eyewear.

High Energy Broadly Tunable DPSS Lasers

FEATURES

- Integrates DPSS pump laser and OPO into a single housing
- Hands-free no-gap wavelength tuning from 192 to 2600 nm
- High, up to 15 mJ pulse energy from OPO
- ▶ 100 Hz pulse repetition rate
- More than 1.8 mJ output pulse energy in UV
- ▶ Less than 5 cm⁻¹ linewidth
- 2–5 ns pulse duration
- Remote control via key pad or PC
- Optional separate output port for 532/1064 nm beam

APPLICATIONS

- Laser-induced fluorescence
- Flash photolysis
- Photobiology
- Remote sensing
- Metrology
- Non-linear spectroscopy

Due to DPSS pump source, the laser requires little maintenance. It is cooled by a water-air chiller, which further reduces running costs. An OPO pump energy monitor allows monitoring of pump laser performance. A standard feature includes a separate output port for the 355 nm pump beam.

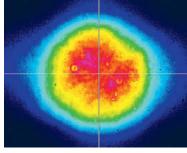
Picosecond Lasers

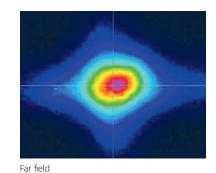
NT230 SERIES

SPECIFICATIONS 1)

Model		NT230-50		NT230-100
ОРО				
Wavelength range				
Signal			405–710 nm	
Idler		710–2600 nm		
SH and SF			210-405 nm ²⁾	
DUV			192–210 nm	
Pulse energy ³⁾				
OPO		15 mJ		9 mJ
SH and SF ⁴		1.8 mJ		1.3 mJ
DUV		0.25 mJ		0.15 mJ
Pulse repetition rate		50 Hz		100 Hz
Pulse duration ⁵⁾			2–5 ns	
Linewidth ⁶⁾			<5 cm ⁻¹	
Tuning resolution 7)			· o citi	
Signal			1 cm ⁻¹	
Idler			1 cm ⁻¹	
SH/SF/DUV			2 cm ⁻¹	
Polarization			2 011	
Signal			horizontal	
Idler			vertical	
SH/SF		horizontal		
DUV		vertical		
OPO beam divergence ⁸⁾		<2 mrad		
Typical beam diameter ⁹⁾				
Typical beam diameter ?			4 mm	
PUMP LASER				
Pump wavelength ¹⁰⁾			355 nm	
Typical pump pulse energy ¹¹⁾		50 mJ		35 mJ
Pulse duration ⁶⁾		2	↓–6 ns at 1064 nr	n
PHYSICAL CHARACTERISTICS				
Unit size (W \times L \times H)		Δ	51 × 696 × 172 m	m
Power supply size ($W \times L \times H$)			71 × 391 × 147 m	
External chiller			inquire	
Umbilical length			2.5 m	
onionearlength			2.5 11	
OPERATING REQUIREMENTS				
Cooling			external chiller	
Room temperature			18–27 °C	
Relative humidity		20-8	0 % (non-conder	nsing)
Power requirements		100-240 \	AC, single phase	e, 50/60 Hz
Power consumption			<1 kVA	
Due to continuous improvement, all specifi- cations are subject to change. Parameters marked typical are illustrative. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 450 nm and for basic system without options. Separate –SH and –SF options are available. See tuning curves for typical outputs at other wavelengths.	 When wavelengt wavelength is c resolution is 0.1 and 0.05 nm fo Full angle meas 450 nm. Beam diameter 	cm ⁻¹ for 210 – 405 nm range. th is controlled from PC. When ontrolled from keypad, tuning nm for signal, 1 nm for idler r SH, SF and DUV. sured at the FWHM level at is measured at 450 nm at the an vary depending on the ergy.		VOIL ANCION INVOEIL LASER ADARA ANCIO PE OS ISM DEPOSIBIL TO DES SUB TODORES IN TO REFLECTED OS SUBTIERES RADARADON REFLECTED OS SUBTIERES ADARADONO MAR 15 mil, public 2 - 5 mil LASE IN LASER PRODUCT
Measured at 260 nm wavelength. FWHM measured with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.	¹⁰⁾ Separate outpu	t port for the 3rd harmonic rd. Output ports for other	for best OPC	ser pulse energy will be optimiz) performance and can vary wi manufacture.

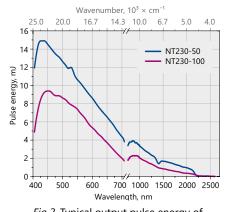
***EKSPLA**

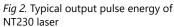

NANOSECOND TUNABLE LASERS

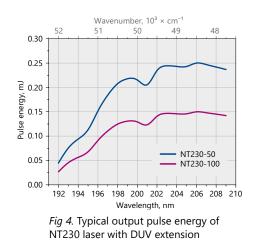

NT230 SERIES

Accessories and optional items

Option	Features	
-SH	Tuning range extension in UV range (210-405 nm) by second harmonic generation	
-SF	Tuning range extension in 300–405 nm range by sum-frequency generation	
-SH/SF	Tuning range extension in 210–405 nm range by combining second harmonic and sum-frequency generator outputs for maximum possible pulse energy	
-DUV	Deep UV option for 192 – 210 nm range output	
-H, -2H	1064 nm or 532 nm output via separate port	
-FC	Fiber coupled output in 300–2000 nm range	
-ATTN/FC	Fiber coupled attenuator	
-SCU	Spectral filtering accessory for improved spectral purity of pulses	


PERFORMANCE





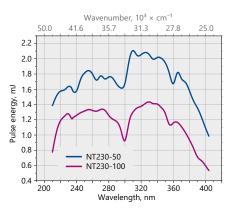

At ~1.5 m distance from output

Fig 1. Typical beam profiles of NT230 series lasers at 450 nm

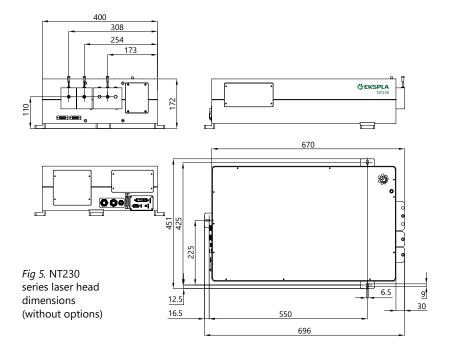


Fig 3. Typical output pulse energy of NT230 laser with SH/SF extension

NT230 SERIES

OUTLINE DRAWINGS

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NT230-50-SH-H-2H-SCU

Mod	lel
Pulse rep rate in Hz	

Н	→ extra 1064 nm output
	 → extra 532 nm output → spectral filtering accessory

Optional tuning range extension				
SH	→ 210–405 nm			
SF	→ 300–405 nm			
SH/SF	→ 210–405 nm			
DUV	→ 192–210 nm			

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

NT242 SERIES

BENEFITS

- High repetition rate 1000 Hz enables fast data collection
- End pumping with diode technology ensures high reliability and low maintenance costs
- Narrow linewidth (down to 3 cm⁻¹) and superior tuning resolution (1 – 2 cm⁻¹) allow recording of high quality spectra
- High integration level saves valuable space in the laboratory
- In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment
- Attenuator and fiber coupling options facilitate incorporation of NT242 systems into various experimental environments

NT242 series lasers produce pulses at an unprecedented 1 kHz pulse repetition rate, tunable over a broad spectral range. Integrated into a single compact housing, the diode pumped Q-switched Nd:YAG laser and OPO offers hands-free, no-gap tuning from 210 to 2600 nm. With its 1000 Hz repetition rate, the NT242 series laser establishes itself as a versatile tool for many laboratory applications, including laser induced fluorescence, flash photolysis, photobiology, metrology, remote sensing, etc.

NT242 series systems can be controlled from a remote control pad

or/and a computer using supplied LabVIEW[™] drivers. The control pad allows easy control of all parameters and features on a backlit display that is easy to read even with laser safety eyewear.

Thanks to a DPSS pump source, the laser requires little maintenance. It is equipped with air-cooled built-in chiller, which further reduces running costs. A built-in OPO pump energy monitor allows monitoring of pump laser performance without the use of external power meters. The optional feature provides a separate output port for the 1064, 532 or 355 nm beam.

Broadly Tunable kHz Pulsed DPSS Lasers

FEATURES

- Integrates DPSS pump laser and OPO into a single housing
- Hands-free no-gap wavelength tuning from 210 to 2600 nm
- 1000 Hz pulse repetition rate
- More than 60 µJ output pulse energy in UV
- ▶ Less than 5 cm⁻¹ linewidth
- ▶ 3-6 ns pulse duration
- Remote control via key pad or PC
- Optional separate output for the OPO pump beam 355 nm, 532 nm or 1064 nm

APPLICATIONS

- Laser-induced fluorescence spectroscopy
- Pump-probe spectroscopy
- Non-linear spectroscopy
- Time-resolved spectroscopy
- Photobiology
- Remote sensing
- Determination of the telescope throughput

Picosecond Lasers

High Intensity Lasers

Other Ekspla Products

NT242 SERIES

SPECIFICATIONS ¹⁾

Model	NT242	NT242-SH	NT242-SF	NT242-SH/SF
OPO				
Wavelength range				
Signal		405-	710 nm	
Idler		710-2	.600 nm	
SH and SF	_	210-300 nm	300-405 nm	210-405 nm
Pulse energy ²⁾				
OPO		45	ω μ	
SH and SF	_	40 µJ at 230 nm	•	at 320 nm
Pulse repetition rate			00 Hz	
Pulse duration ³⁾	3–6 ns			
Linewidth ⁴⁾		< 5	cm ^{−1}	
Tuning resolution ⁵⁾				
Signal		10	cm ^{−1}	
ldler			cm ⁻¹	
SH and SF	_		2 cm ⁻¹	
Polarization				
Signal		horiz	zontal	
Idler		ver	rtical	
SH and SF	_		vertical	
Typical beam diameter ⁶⁾		3 ×	6 mm	
PUMP LASER				
Pump wavelength ⁷⁾	3	55 nm	355 /	1064 nm
Max pump pulse energy ⁸⁾		3 mJ	3 / 1 mJ	
Pulse duration ³⁾			at 1064 nm	
		1 0 113 0		
PHYSICAL CHARACTERISTICS				
Unit size (W \times L \times H)			0 × 297 mm	
Power supply size ($W \times L \times H$)) × 286 mm -	
Umbilical length		2.	5 m	
OPERATING REQUIREMENTS				
Cooling		built-i	n chiller	
Room temperature		18-	27 °C	
Relative humidity		20-80 % (no	n-condensing)	
Power requirements		100–240 V AC, sin	igle phase 50/60 Hz	
Power consumption		< 1.	5 kVA	
 Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative; they are indications of typical performance and will vary with each unit we manufactu Unless stated otherwise, all specifications is measured at 450 nm and for basic system without options. See tuning curves for typical outputs at ot wavelengths. Measured at FWHM level with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope. Linewidth is <8 cm⁻¹ for 210–405 nm range. For manual input from PC. When wavelen is controlled from keypad, tuning resolutio 0,1 nm for signal, 1 nm for idler and 0.05 r for SH and SF. 	the 1/e ² lev pump pulse re. harmonic is are ^(a) The laser m for best OF laser outpu manufactur ge. ge. gth on is	utput port for the 3rd and other s optional. hax pulse energy will be optimize PO performance. The actual purr it can vary with each unit we	ed	VISILE AND/OR INVISILE LASER AD ADD IF DR SAN RPOGULE TO DR REFLECTIO OR CATTRED ANDARON MAL 500 JL, patrie 3 – 0 ms CLASS IN LASER PRODUCT

Picosecond Lasers

NT242 SERIES

Accessories and optional items

Option	Features
-SH	Tuning range extension in UV range (210-300 nm) by second harmonic generation
-SF	Tuning range extension in 300–405 nm range by sum-frequency generation
-SH/SF	Tuning range extension in 210 – 405 nm range by combining second harmonics and sum-frequency generator outputs for maximum possible pulse energy
-SCU	Spectral filtering accessory for improved spectral purity of pulses
-H, -2H, -3H	1064, 532 and 355 nm output via separate port
-FC	Fiber coupler
-Attn	Attenuator option

PERFORMANCE

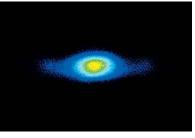
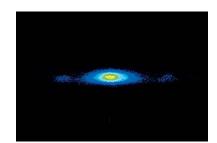



Fig 1. Typical beam profiles of NT242 series lasers at 500 nm

Near field

Far field

Wavenumber, $10^3 \times \text{cm}^{-1}$ 10.0 5.0 50.0 25.0 16.6 3.3 600 ΨA SH/SF 500 Signal Idler 400 Pulse energy, µJ 300 200 100 0 -200 300 400 500 600 700 1000 1500 2000 2500 3000 Wavelength, nm

Fig 2. Typical output pulse energy of NT242 series tunable laser

74

Other Ekspla Products

Femtosecond Lasers

High Intensity Lasers

SAVANORIU AV. 237, LT-02300 VILNIUS, LITHUANIA TEL + 370 5 2649629 E-MAIL SALES@EKSPLA.COM WWW.EKSPLA.COM REV. 20200330

NT242 SERIES

OUTLINE DRAWINGS

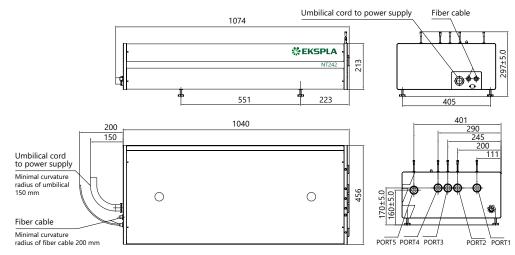


Fig 3. NT242 series laser head dimensions

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.


NT242-SH-H-2H-SCU

	Model	Options: H → extra 1064 nm output
Optiona extension	al tuning range on:	2H → extra 532 nm output SCU → spectral filtering accessory
SH	→ 210-300 nm	
SF	→ 300-405 nm	
SH/SF	→ 210–405 nm	

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

NT252 SERIES

BENEFITS

- High repetition rate (1000 Hz) enables fast data collection
- End diode pumping and water-free technology ensure high reliability and low maintenance costs
- Superior tuning resolution (1 – 2 cm⁻¹) allows recording of high quality spectra
- High integration level saves valuable space in the laboratory
- In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment
- Attenuator and fiber coupling options facilitate incorporation of NT252 systems into various experimental environments

NT252 series tunable laser systems integrates into a single compact housing a nanosecond Optical Parametric Oscillator (OPO) and Diode-Pumped Solid–State (DPSS) Q-switched pump laser.

Diode pumping enables fast data acquisition at high pulse repetition rates up to 1 kHz while avoiding frequent flashlamp changes that are common when flashlamp pumped lasers are used. Special cooling technology eliminates the need for tap water, thus further reducing running and maintenance costs. All lasers feature motorized tuning across the specified tuning range. The output wavelength can be set from control pad with backlit display that is easy to read even while wearing laser safety glasses. Alternatively, the laser can be also controlled from personal computer using supplied LabVIEW[™] drivers.

High conversion efficiency, stable output, easy maintenance and compact size make our systems excellent choice for many applications.

Tunable Wavelength UV-NIR Range DPSS Lasers

FEATURES

- Integrates DPSS pump laser and OPO into a single housing
- Dry, no water inside!
- Hands-free no-gap wavelength tuning from 335 to 2600 nm
- 1000 Hz pulse repetition rate
- More than 1.1 mJ output pulse energy in NIR
- ▶ 3-6 ns pulse duration
- Remote control via key pad or PC

APPLICATIONS

- Photoacoustic imaging
- Laser-induced fluorescence spectroscopy
- Pump-probe spectroscopy
- Photobiology
- Remote sensing
- Metrology

Accessories and Optional Items

Option	Features
-SH	Tuning range extension in UV range (335 – 670 nm) by second harmonic generation
-H, -2H	1064 and 532 nm output via separate port
-FC	Fiber coupler
-Attn	Attenuator option

Picosecond Lasers

NT252 SERIES

SPECIFICATIONS 1)

Model NT252			
OPO			
Wavelength range			
Signal	670–1063 nm		
Idler	1064–2600 nm		
SH	335-670 nm		
Pulse energy ²⁾			
OPO	1100 μJ at 750 nm		
SH	200 μJ at 400 nm		
Pulse repetition rate	1000 Hz		
Linewidth ³)	<8 cm ⁻¹		
Tuning resolution ⁴⁾			
Signal	1 cm ⁻¹		
Idler	1 cm ⁻¹		
SH	2 cm ⁻¹		
Polarization			
Signal	horizontal		
Idler	vertical		
SH	horizontal		
Typical beam diameter ^{5) 6)}	3 × 6 mm		
PUMP LASER			
Pump wavelength ⁷⁾	532 nm		
Max pump pulse energy ⁸⁾	4 mJ		
Pulse duration ⁹⁾	4 – 6 ns		
Pulse energy stability (StdDev)	<2.5 %		
PHYSICAL CHARACTERISTICS			
Unit size ($W \times L \times H$)	456 × 1040 × 297 mm		
Power supply size ($W \times L \times H$)	520 × 400 × 300 mm		
Umbilical length	2.5 m		
OPERATING REQUIREMENTS			
Cooling	air-cooled		
Room temperature	18–27 °C		
Relative humidity	20-80 % (non-condensing)		
Power requirements	100–240 V AC, single phase 50/60 Hz		
Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative; they are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 750 nm and for basic system without options	 ⁵⁾ Measured at the wavelength indicated in the "Pulse energy" specification row. ⁶⁾ Beam diameter is measured at the 1/e² level at the laser output and can vary depending on the pump pulse energy. ⁷⁾ Separate output port for the 2nd and other harmonic are optional. 	VERT AND	

- without options. ²⁾ Please refer to tuning curves for typical outputs at other wavelengths.
- ³⁾ In signal and idler range.
- For manual input from PC. When wavelength is controlled from keypad, tuning resolution is 0.1 nm for signal, 1 nm for idler and 0.05 nm for SH.
- Separate output port for the 2nd and other harmonic are optional.
- Laser max pulse energy will be optimized for best OPO performance. The actual pump laser output can vary with each unit we manufacture.
- ⁹ Measured at FWHM level with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.

NT252 SERIES

PERFORMANCE

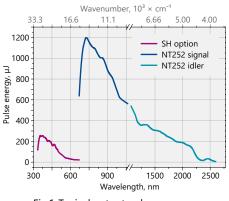


Fig 1. Typical output pulse energy of the NT252-SH tunable laser

OUTLINE DRAWINGS

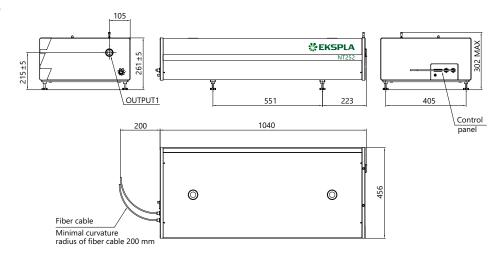


Fig 3. NT252 series laser head dimensions

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NT252-SH-2H

Model	Options: 2H → extra 532 nm output
Optional tuning range extension: SH \rightarrow 335–670 nm	H \rightarrow extra 1064 nm output

Femtosecond Lasers

Picosecond Lasers

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

NT270 SERIES

BENEFITS

- Wide (2500 12000 nm) tuning range is highly useful for s-SNOM and other IR applications
- NT270 is the cost effective solution covering a wide tuning range from a single source
- End pumping with diode technology ensures high reliability and lots of fired shots leading to low maintenance costs
- High integration level saves valuable space in the laboratory

NT270 series tunable laser systems integrate into a single compact housing a nanosecond Optical Parametric Oscillator (OPO) and Diode-Pumped Solid–State (DPSS) Q-switched pump laser.

Diode pumping enables fast data acquisition at high pulse repetition rates up to 1 kHz while avoiding frequent flashlamp changes that are common when flashlamp pumped lasers are used.

The pump lasers do not require water for cooling, thus further reducing running and maintenance costs.

- Air cooling eliminates the need for water, ensuring easy operation and simple installation or integration
- In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment

All lasers feature motorized tuning across the specified tuning range. The output wavelength can be set from control pad with backlit display that is easy to read even while wearing laser safety glasses. Alternatively, the laser can be controlled also from personal computer using supplied LabVIEW[™] drivers.

High conversion efficiency, stable output, easy maintenance and compact size make our systems excellent choice for lots of applications.

Tunable Wavelength NIR-IR Range DPSS Lasers

FEATURES

- Integrates DPSS pump laser and OPO into single housing
- Separate output ports for the pump laser and OPO beams
- OPO output wavelength range from 2500 nm to 12000 nm (depending on model)
- Narrow linewidth
- Hands-free tuning
- <7 ns pulse duration</p>
- Remote control via key pad or PC

APPLICATIONS

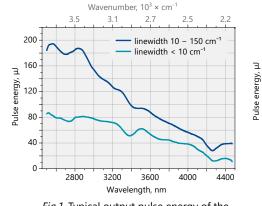
- Scanning Near-field Optical Microscopy (s-SNOM) microscopy
- Single molecule vibrational spectroscopy
- IR spectroscopy
- Gas spectroscopy

NT270 series available models

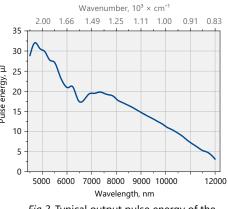
Model	Features
NT277	High pulse repetition rate OPO producing tunable output in 2500 – 4475 nm spectral range
NT277-XIR	Tunable output from NIR to far-IR range, 2500 nm to 12 000 nm

NT270 SERIES

SPECIFICATIONS 1)


Model	NT277	NT277-XIR		
ОРО				
Wavelength range				
Idler	2500–4475 nm	2500–4475 nm 4500–12000 nm ²⁾		
Pulse energy ³⁾				
ldler	80 µJ at 3000 nm	80 μJ at 3000 nm 20 μJ at 7000 nm		
Pulse repetition rate	10	000 Hz		
Linewidth ⁴⁾	<10 cm ⁻¹	<12 cm ⁻¹		
Tuning resolution ⁵⁾				
Idler	1	cm ⁻¹		
Polarization				
Idler	vertical	horizontal		
Typical beam diameter ^{6) 7)}	4 mm	6 mm		
PUMP LASER				
Pump wavelength	10	64 nm		
Max pump pulse energy ⁸⁾	1.9 mJ			
Pulse duration ⁹⁾	<10 ns			
Beam quality	fit to Gaussian >90%			
Pulse energy stability (StdDev)	<0.5 %			
PHYSICAL CHARACTERISTICS				
Unit size ($W \times L \times H$)	305 × 701 × 270 mm			
Power supply size (W × L × H)	365 × 39	365 × 395 × 290 mm		
Umbilical length	2	2.5 m		
OPERATING REQUIREMENTS				
Cooling	k	by air		
Room temperature	18	18–27 °C		
Relative humidity	20-80 % (non-condensing)			
Power requirements	90–240 V AC, single phase 50/60 Hz			
Power consumption	< (< 0.5 kVA		
Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative; they are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 3000 nm for NT277, NT277-XIR unit and at 7000 nm for NT277-XIR units and for basic system without options.	 For manual input from PC. When wavelength is controlled from keypad, tuning resolution is 1 nm. Measured at the wavelength indicated in the "Pulse energy" specification row. Beam diameter is measured at the 1/e² level at the laser output and and varies depending on the wavelength. 			
Available wavelength range. Custom tuning	The laser max pulse energy will be optimized			

- $^{\scriptscriptstyle 2)}$ $\,$ Available wavelength range. Custom tuning ranges are available.
- ³⁾ See tuning curves for typical outputs at other wavelengths.
- ⁴⁾ Higher energy 10 150 cm⁻¹ option is available for 2500 4475 nm tuning range.
- The laser max pulse energy will be optimized for the best OPO performance. The actual pump laser output can vary with each unit we manufacture. Measured at FWHM level with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope. 9)



NT270 SERIES

PERFORMANCE

Fig 1. Typical output pulse energy of the NT277 and NT277-XIR tunable laser

Fig 2. Typical output pulse energy of the NT277-XIR tunable laser

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NT277-XIR

Model

Tuning range extension: XIR \rightarrow 4500–12000 nm

Femtosecond Lasers

Picosecond Lasers

Picosecond Tunable Systems

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

NT342 SERIES

BENEFITS

- The system is widely tunable 192 – 2600 nm and delivers high pulse energy (up to 50 mJ) that allows the investigation of an extensive range of materials
- Up to 18 μm customization possibility enables studies of IR vibrations of molecules
- Narrow linewidth (down to 3 cm⁻¹) and superior tuning resolution (1 – 2 cm⁻¹) allows recording of high quality spectra
- Flashlamps replacement without misalignment of the laser cavity saves on maintenance costs

- High integration level saves valuable space in the laboratory
- In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment
- Attenuator and fiber coupling options facilitate incorporation of NT342 systems into various experimental environments

The NT342 series tunable wavelength nanosecond laser seamlessly integrates the nanosecond optical parametric oscillator and the Nd:YAG Q-switched nanosecond laser – all in a compact housing.

The main system features are: hands-free wavelength tuning from UV to IR, high conversion efficiency, optional fiber-coupled output and separate output port for pump laser beam.

NT342 has a linewidth of less than 5 cm⁻¹, which is ideal for many spectroscopic applications. The laser is designed for convenient use. It can be controlled from remote keypad or PC using LabView™ drivers that are supplied with the system. The remote keypad features a backlit display that is easy to read even through laser safety googles. The OPO pump energy monitoring system helps to control pump laser parameters. Replacement of laser flashlamps can be done without misalignment of the laser cavity and/or deterioration of laser performance.

High Energy Broadly Tunable Lasers

FEATURES

- Hands-free no gap wavelength tuning from 192 to 4400 nm
- Up to 50 mJ pulse energy in visible spectral range
- Up to 10 mJ pulse energy in UV spectral range
- Up to 15 mJ pulse energy in MIR spectral range
- 3 5 ns pulse duration
- ▶ Up to **20 Hz** pulse repetition rate
- Remote control via key pad or PC
- Optional separate shared output port for 532/1064 nm beam (separate output port for the 355 nm beam is standard)
- OPO pump energy monitoring
- Hermetically sealed oscillator cavity protects non-linear crystals from dust and humidity

APPLICATIONS

- Laser-induced fluorescence
- Flash photolysis
- Photobiology
- Remote sensing
- Time-resolved spectroscopy
- Non-linear spectroscopy

Picosecond Lasers

NT342 SERIES

Tuning range extending optional add-ons

Option	Features
-SH	Second harmonic generator for 210–410 nm range
-SF	Sum-frequency generator for 300–410 nm range with high pulse energy
-SH/SF	Combined option for highest pulse energy in 210–410 nm range
-DUV	Deep UV option for 192–210 nm range output
-MIR	Mid infrared option for 2500–4400 nm range output

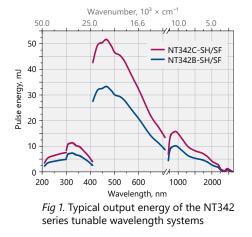
Accessories and other optional add-ons

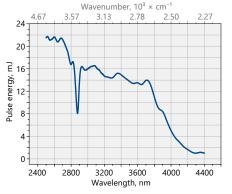
Option	Features
-FC	Fiber coupled output in 350–2000 nm range
-ATTN/FC	Fiber coupled attenuator
-H, -2H	Separate shared output port for pump laser harmonic (532 or 1064 nm wavelengths)
-AW	Air cooled power supply

SPECIFICATIONS ¹⁾

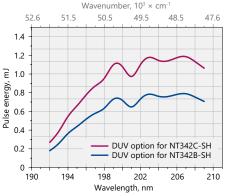
Model	NT342B	NT342C
ОРО		
Wavelength range ²⁾		
Signal	410-71	0 nm ³⁾
Idler	710-26	600 nm
SH generator (optional)	210-4	10 nm
SH/SF generator (optional)	210-4	10 nm
DUV generator (optional)	192–2	10 nm
MIR generator (optional)	2500-4	400 nm
Output pulse energy	· · · · · · · · · · · · · · · · · · ·	
OPO ⁴⁾	30 mJ	50 mJ
SH generator (optional) ⁵⁾	4 mJ	6.5 mJ
SH/SF generator (optional) ⁶⁾	6 mJ	10 mJ
DUV generator (optional) 7)	0.6 mJ	1 mJ
MIR generator (optional) ⁸⁾	15 mJ	
Linewidth	< 5 cm ⁻¹ 9)	
Tuning resolution ¹⁰⁾		
Signal (410–710 nm)	1 cm ⁻¹	
ldler (710–2600 nm)	1 cm ⁻¹	
SH/SF/DUV (192–410 nm)	2 cm ⁻¹	
MIR (2500–4400 nm)	1 cr	n ⁻¹
Pulse duration ¹¹⁾	3–5 ns	
Typical beam diameter ¹²⁾	5 mm	7 mm
Typical beam divergence ¹³⁾	< 2 mrad	
Polarization		
Signal	horizontal	
ldler	vertical	
SH/SF	horizontal	
DUV	vertical	
MIR	horiz	ontal

%EKSPLA


NT342 SERIES


SPECIFICATIONS ¹⁾

Model		NT342B	NT342C
PUMP LASER ¹⁴⁾			
Pump wavelength			355 nm
Max pump pulse energy		100 mJ	150 mJ
Pulse duration			4–7 ns
Beam quality		Hat-top in near field, without hot spots	
Beam divergence		< 0.6 mrad	
Pulse energy stability (StdDev)			< 3.5 %
Pulse repetition rate		10 or 20 Hz	10 Hz
PHYSICAL CHARACTERISTICS			
Unit size (W × L × H) ¹⁵⁾		456 ×	821 × 270 mm
Power supply size (W \times L \times H)		330 ×	490 × 585 mm
Umbilical length			2.5 m
OPERATING REQUIREMENTS			
Water consumption (max 20 °C) ¹⁶⁾			< 10 l/min
Room temperature		18–27 °C	
Relative humidity		20-80 % (non-condensing)	
Power requirements		200 – 240 VAC, single phase, 50/60 Hz	
Power consumption		< 1.5 kVA	
 Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative; they are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 450 nm and for basic system without options. Hands-free tuning range is from 192 nm to 4400 nm. MIR option is not compatible with SF and DUV option. Inquire for custom IR option with tuning up to 18 µm. Tuning range extension to 400 – 709 nm is optional. Measured at 450 nm. See tuning curves for typical outputs at other wavelengths. Measured at 340 nm. SF generator is optimized for maximum output in 300 – 410 nm range. See tuning curves for typical outputs at other wavelengths. Measured at 200 nm. See tuning curves for typical outputs at other wavelengths. Measured at 300 nm. See tuning curves for typical outputs at other wavelengths. 	 2500 – 4400 ¹⁰ When wave wavelength resolution is MIR and 0.0 ¹⁰ FWHM meat n srise tim oscilloscope ¹² Beam diame FWHM leve depending wavelength ¹³ Full angle m 450 nm, < 5 ¹⁴ Separate ou standard. Obeams are of optimised fr specification manufacture ¹⁵ Length from configuratice 	length is controlled from PC. When is controlled from keypad, tuning 0.1 nm for signal, 1 nm for idler, 15 nm for SH, SF and DUV. sured with photodiode featuring e and 300 MHz bandwidth e. eter is measured at 450 nm at the l. It is approximate and can vary on the pump pulse energy and the assured at the FWHM level at 5 mrad at 3000 nm with MIR option. htput port for the 355 nm beam is utputs for 1064 nm and 532 nm optional. Laser output will be or the best OPO operation and is may vary with each unit we e. a 821 to 1220 mm depending on	State Andread State Andread


NT342 SERIES

PERFORMANCE

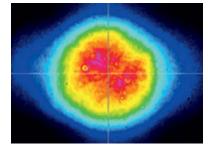


Fig 3. Typical output energy of the NT342 series tunable wavelength systems with MIR extension

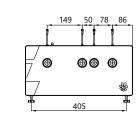


Fig 2. Typical output energy of the NT342 series tunable wavelength systems with SH/DUV extension

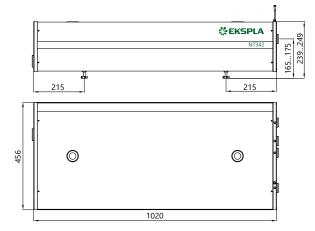
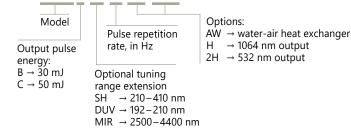


Fig 4. NT342 series laser typical beam profile at 450 nm after ~1.5 m distance from output

OUTLINE DRAWINGS


Fig 4. NT342 series laser head typical outline drawing. Unit length and port position vary depending on model

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NT342B-SH-10-AW-H/2H

***EKSPLA**

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

NT350 SERIES

BENEFITS

- High pulse energy (up to 230 mJ) is highly beneficial for photoacoustics imaging applications
- Superior tuning resolution (1 – 2 cm⁻¹) allows recording of high quality spectra
- High integration level saves valuable space in the laboratory
- Flashlamps replacement without misalignment of the laser cavity saves on maintenance costs
- In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment
- Attenuator and fiber bundle coupling options facilitate incorporation of NT350 systems into various experimental environments

NT352 series tunable laser seamlessly integrates in a compact housing a nanosecond optical parametric oscillator and Nd:YAG Q-switched laser.

Two models with different output pulse energy values are offered. The most powerful model has more than 230 mJ pulse energy at 700 nm. Narrow linewidth ($<10 \text{ cm}^{-1}$) is nearly constant trough whole tuning range, which makes laser suitable for many spectroscopy application. The device is controlled from the remote keypad or PC using LabVIEW[™] drivers that are supplied with the system. The remote pad features a backlit display that is easy to read even while wearing laser safety glasses.

System is designed for easy and cost-effective maintenance. Replacement of flashlamps can be done without misalignment of the laser cavity and deterioration of laser performance. OPO pump energy monitoring system helps to increase lifetime of the optical components.

High Energy NIR Range Tunable Lasers

FEATURES

- Hands-free, automated wavelength tuning from 330 to 2600 nm
- Up to 230 mJ in range
 660 2600 nm, 35 mJ in range
 330 660 nm
- Narrow linewidth across tuning range
- ▶ 3-5 ns pulse duration
- Remote control via key pad or PC
- Separate output port for 532 nm beam. Output for 1064 nm is optional
- OPO pump energy monitoring
- Hermetically sealed oscillator cavity protects non-linear crystals from dust and humidity

APPLICATIONS

- Photoacoustic imaging
- Flash photolysis
- Photobiology
- Remote sensing
- Non-linear spectroscopy

Options

Optional items are available allowing optimization of the laser system for Your application, for example:

- Fiber bundle coupled output in 350–2000 nm range;
- Efficient second harmonic generator for 330–660 nm range;
- Pulse energy attenuator;
- Water-air cooled power supply.
 Please inquire custom-build versions and options.

Picosecond Lasers

NT350 SERIES

SPECIFICATIONS ¹⁾

Model		NT352C		NT352E
ОРО				
Wavelength range				
Signal			660–1064 nm	
Idler			1065–2600 nm	
SH			330-660 nm	
Output pulse energy ²⁾				
OPO		150 mJ		230 mJ
SH		25 mJ		35 mJ
Linewidth ³⁾			<10 cm ⁻¹	
Tuning resolution ⁴⁾				
Signal (660–1064 nm)			1 cm ⁻¹	
Idler (1064–2450 nm)			1 cm ⁻¹	
SH (330–530 nm)			2 cm ⁻¹	
Pulse duration ⁵⁾			3–5 ns	
Typical beam diameter ⁶⁾		7 mm	2 0 1.0	9 mm
Typical beam divergence 7)			<2 mrad	5
Polarization			2	
Signal beam			horizontal	
Idler beam			vertical	
SH beam			vertical	
Stribean			verticui	
PUMP LASER ⁸⁾				
Pump wavelength			532 nm	
Max pump pulse energy		450 mJ		700 mJ
Pulse duration			4 – 6 ns	
Beam quality		"Hat-Top" in n	ear field. Close to Ga	ussian in far field
Beam divergence			<0.6 mrad	
Pulse energy stability (StdDev)			<2.5 %	
Pulse repetition rate			10 Hz	
PHYSICAL CHARACTERISTICS				
Unit size ($W \times L \times H$)			456 × 821 × 270 mr	n
Power supply size ($W \times L \times H$)			330 × 490 × 585 mr	n
Umbilical length		2.5 m		
OPERATING REQUIREMENTS				
Water consumption (max 20 °C) 9)			10 l/min	
Room temperature		18–27 °C		
Relative humidity)-80 % (non-condens	•
Power requirements ¹⁰⁾		200 – 2	40 VAC, single phase,	, 50/60 Hz
Power consumption			< 1.5 kVA	
 Due to continuous improvement, all specifications are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 700 nm and for basic system without options. Measured at 700 nm for OPO and 350 nm for SH. See tuning curves for typical outputs at other wavelengths. In signal and idler range. When wavelength is controlled from PC. When wavelength is controlled from keypad, tuning resolution is 0.1 nm for signal, 1 nm for idler and 0.5 nm for SH. 	6) Be lev en 7) Ful 8) Sej sta Pu OF un 9) Air	/HM measured with photodiode feature and 300 MHz bandwidth oscillosco am diameter is measured at 700 nm a rel and can vary depending on the pu- ergy. III angle measured at the FWHM level parate output port for the 532 nm be andard. Output for 1064 nm beam is c mp laser output will be optimized for PO operation and specification may va- it we manufacture. I cooled power supply is available as a ains voltage should be specified when	ppe. at the 1/e ² imp pulse at 700 nm. eam is optional. the best ary with each option.	USBLE AND/OR INVISBLE LASER RADATI VISBLE AND/OR INVISBLE LASER RADATI AUTO DE YOR SION EMPOSIBLE TO DISECT AUTO DE YOR SION EMPOSIBLE TO DE YOR SION EMPOSIBLE TO DISECT AUTO DE YOR SION EMPOSIBLE

NT350 SERIES

PERFORMANCE

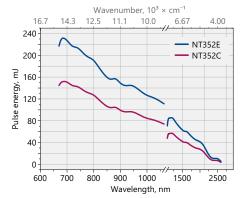


Fig 1. Typical output energy of the NT350 series tunable wavelength systems

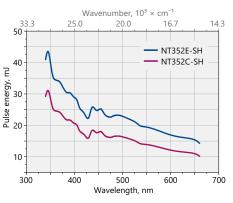


Fig 2. Typical output energy of the NT350 series tunable wavelength systems with SH option

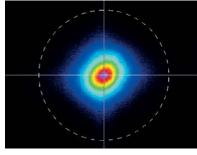


Fig 3. Typical far field beam profile of NT352B laser at 800 nm

C E

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NT352C-10-SH-AW-H

Model Optional tuning range extension Output pulse energy: SH → 330-660 nm . → 150 mJ → 250 mJ

> Pulse repetition rate, in Hz

Options:

 $AW \rightarrow$ water-air heat exchanger → 1064 nm output Н

Femtosecond Lasers

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

NT370 SERIES

BENEFITS

- Wide tuning range in 2500 4400 nm or 5500 – 18 000 nm is highly useful for s-SNOM and other IR applications
- NT370 is a cost effective solution covering a wide tuning range from a single source
- Superior tuning resolution (1 cm⁻¹) allows recording of high quality spectra
- High integration level saves on valuable space in the laboratory

NT370 series tunable laser seamlessly integrates in a compact housing the nanosecond optical parametric oscillator and Nd:YAG Q-switched laser. Pumped by fundamental harmonics output the lasers provides tuning in mid- and far-infrared spectral ranges.

NT373-XIR model uses IR crystal based cascade OPO for tunable output in 5500–18000 nm range. Customized tuning ranges are available upon request. The linewidth of NT373-XIR model is nearly constant across tuning range and it is less than 8 cm⁻¹.

- Flashlamps replacement without misalignment of the laser cavity saves on maintenance costs
- In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
- Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment

NT377 model produces tunable output in 2500–4400 nm range. Pulse energy is exceeding 10 mJ for wavelengths shorter than 3600 nm, while linewidth is below 8 cm⁻¹. Because of narrow linewidth of output radiation the laser is suitable for many infrared spectroscopic applications, for example cavity ring-down spectroscopy, gas detection and remote sensing.

The device is controlled from the remote keypad or from PC using LabView[™] drivers that are supplied together with the system. The remote pad features a backlit display that is easy to read even while wearing laser

High Energy IR Range Tunable Lasers

FEATURES

- Hands-free, automated wavelength tuning
- Up to 15 mJ pulse energy in mid and 1 mJ in far IR spectral range
- ▶ Less than **8 cm⁻¹** linewidth
- ▶ 3 5 ns pulse duration
- ▶ 10 or 20 Hz pulse repetition rate
- ▶ Remote control via key pad or PC
- Separate output port for 1064 nm pump beam option
- OPO pump energy monitoring
- Replacement of the flashlamps without misalignment of the laser cavity

APPLICATIONS

- Vibrational spectroscopy
- Cavity ring-down CRDS, cavity ring-down laser absorption CRLAS spectroscopy
- Infrared spectroscopy
- ► Gas spectroscopy

safety glasses. System is designed for easy and cost-effective maintenance. Replacement of flashlamps can be done without misalignment of the laser cavity and deterioration of laser performance. OPO pump energy monitoring system helps to increase lifetime of the optical components.

Accessories and optional add-ons

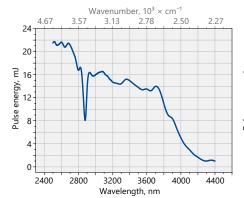
Option	Features
-AW	Water-air cooling option
-20	20 Hz PRR option
-H	Optional 1064 nm output

XEKSPLA

NT370 SERIES

SPECIFICATIONS 1)

Model	NT377	NT373-XIR	
ОРО			
Wavelength range	2 500-4 400 nm	5 500 – 18 000 nm ²⁾	
Output pulse energy ³⁾	15 mJ	1 mJ	
Linewidth ⁴⁾	< 8 c	:m ⁻¹	
Tuning resolution ⁵⁾	1 cn	n ⁻¹	
Typical pulse duration ⁶⁾	3-5	ns	
Typical beam diameter 7)	8 mm	10 mm	
Polarization	horizo	ontal	
PUMP LASER ⁸⁾			
Pump wavelength	1064	nm	
Max pump pulse energy	250 mJ	300 mJ	
Pulse duration	4-6	ð ns	
Beam quality	"Hat-Top" ir	n near field	
Beam divergence	< 0.5	mrad	
Pulse energy stability (StdDev)	<1	%	
Pulse repetition rate	10 or 2	20 Hz	
	330 × 490 × 585 mm 2.5 m		
Power supply size (W \times L \times H)	330 × 490 × 585 mm		
Umbilical length	2.5	m	
OPERATING REQUIREMENTS			
Water consumption (max 20 °C) 9)	<10 l/min		
Room temperature	18−27 °C		
Relative humidity	20-80 % (non	-condensing)	
Power requirements ¹⁰⁾	200 – 240 VAC, sing	le phase, 50/60 Hz	
Power consumption	< 1.5	kVA	
Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 3000 nm for NT377 unit and at 7000 nm for NT373-XIR unit and for basic system without options.	 ⁵⁾ When wavelength is controlled from PC. When wavelength is controlled from keypad, tuning resolution is 1 nm ⁶⁾ Measured art FWHM level with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope. ⁷⁾ Beam diameter is measured at the 1/e² level and varies depending on the wavelength. 		
 Additional output in 1780 – 2010 nm and 2300 – 2645 nm ranges is possible. Please contact Ekspla for more detailed specifications. 	[®] Laser output will be optimized for the best OPO operation and specification may vary with each unit we manufacture.		
Output is specified at wavelengths defined in note 1. See tuning curves for typical outputs at other wavelengths.	 9) Air cooled power supply is available as an option. 10) Should be specified when ordering. 		
Linewidth is specified at wavelengths defined	······································		


Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

note 1. See tuning curves for typical outputs other wavelengths. Linewidth is specified at wavelengths defined in note 1.

High Intensity Lasers

Other Ekspla Products

PERFORMANCE

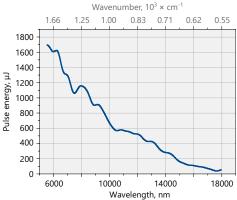
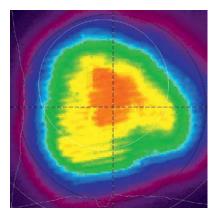



Fig 1. Typical output energy of the NT377 tunable wavelength laser

Fig 2. Typical output pulse energy of the NT373-XIR tunable wavelength laser

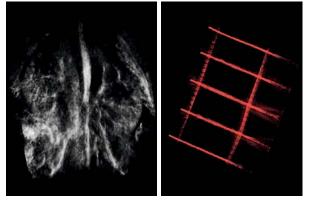
Fig 3. Typical beam profile at 3000 nm and 7000 nm wavelengths in near field

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

PhotoSonus

Following the demand for high output energies in the photoacoustic market for imaging larger volumes of tissue, PhotoSonus, an updated high energy tunable laser source for photo-acoustic imaging, was introduced. Time-tested Ekspla nanosecond pump laser, parametric oscillator, power supply and cooling unit are integrated in a single robust housing to provide mobility, ease of use and low maintenance cost. The highly flexible PhotoSonus platform makes it easily integrated and used in a photoacoustic imaging system. It is fully motorized and computer controlled, with user trigger outputs and inputs and special options such as motorized switching between OPO Signal and Idler, motorized attenuator, internal energy meter and electromechanical output shutter.

Recently, a fast wavelength switching option was introduced that enables each laser pulse to have a different wavelength within the entire signal or idler range and at any sequence. This new feature, combining high pulse energy (up to 180 mJ) and wide wavelength tuning range (660 – 2300 nm) makes PhotoSonus the irreplaceable imaging source for any photo acoustic system.


For even higher sample imaging depth and resolution a PhotoSonus+, with up to 250 mJ maximum pulse energy, was introduced.

For convenience, the outputs of PhotoSonus and PhotoSonus+ lasers can be coupled with almost any type of fiber bundle. High Energy, Mobile, Tunable Wavelength Laser Source for Photoacoustic Imaging

FEATURES

- High up to 250 mJ output energy
- Wide tuning range from 660 to 1064 nm and from 1065 to 2300 nm
- 10 Hz or 20 Hz pulse repetition rate
- Integrated pump laser, OPO and PSU in single mobile unit
- One year warranty
- Low maintenance cost
- Fiber bundle connectors with safety interlock
- Fast Wavelength Switching within entire range between two consecutive pulses (optional)
- Electromechanical output shutter with laser self-test capability (optional)
- Integrated energy meter (optional)
- ▶ Motorized attenuator (optional)
- Access to pump laser wavelengths 1064/532 nm (optional)
- Signal and Idler through the same output (optional)

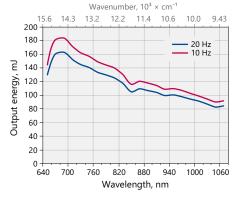
SAMPLE PHOTOACOUSTIC IMAGES

Courtesy of PhotoSound Technologies, Inc.

Picosecond Lasers

SPECIFICATIONS ¹⁾

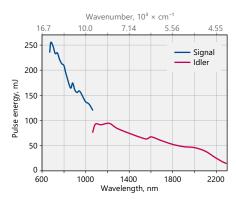
PhotoSonus


Model	PhotoSonus	PhotoSonus+	
ОРО			
Wavelength range			
Signal	660 – 106	64 nm	
Idler (optional)	1065 – 23	00 nm	
OPO output MAX pulse energy ²⁾	> 180 mJ at 10 Hz; or > 160 mJ at 20 Hz	> 250 mJ at 10 Hz	
Scanning step:			
Signal (660 – 1064 nm)	0.1 nm		
ldler (1065 – 2450 nm)	1 nn	ı	
Pulse duration ³⁾	3 – 5 ns		
Signal linewidth	< 10 cm ⁻¹		
Typical signal beam diameter (1/e ²) 4)	7 ± 2 mm	9 ± 2 mm	
PHYSICAL CHARACTERISTICS			
Unit size (W × L × H mm)	434 × 672 ×	887 mm	
OPERATING REQUIREMENTS			
Room temperature	18 – 27	°C	
Relative humidity	20 – 80 % (non-condensing)		
Power requirements ⁵⁾	208 or 240 VAC, single phase 50/60 Hz		

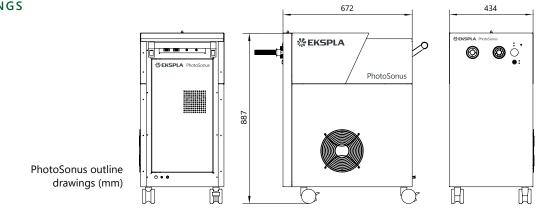
- Due to continuous improvement, all specifications are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 700 nm.
- ²⁾ Free space measurement at 700 nm. See tuning curves for typical outputs at other wavelengths.
- FWHM measured with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.
- Measured at the free space output at 700 nm. Can be adjusted as per request.
- ⁵⁾ Mains voltage should be specified when ordering.

PERFORMANCE

Power consumption



< 1.0 kVA (10 Hz),


< 1.5 kVA (20 Hz)

< 1.5 kVA (10 Hz)

Typical PhotoSonus signal output pulse energy vs. wavelength curve

Typical PhotoSonus+ signal and idler output pulse energy vs. wavelength curve

DRAWINGS

Femtosecond Lasers

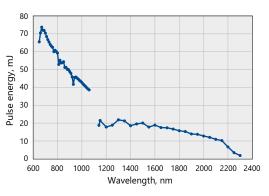
***EKSPLA**

NT230 • NT242 • NT252 • NT270 • NT342 • NT350 • NT370 PhotoSonus • PhotoSonus X

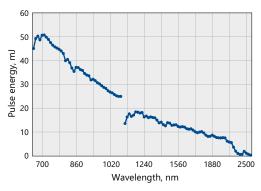
PhotoSonus X

PhotoSonus X is a perfect solution for photoacoustic imaging in pre-clinical and clinical use and when fast sample scanning is required. Having high output energy of up to 65 mJ at the peak, a broad wavelength tuning range from 665 to 2600 nm, high pulse repetition rate up to 100 Hz and fast wavelength switching makes it a perfect photoacoustic imaging source for gaining high-resolution images and ensuring high data acquisition rate. Moreover, being built on a diode pumped solid-state laser platform, PhotoSonus X assures significantly quieter operation (< 65 db) compared with flash-lamp pumped lasers, which is very beneficial for clinical use.

Diode pumped laser technology and well-engineered system design ensures high reliability and low-cost system operation. PhotoSonus X output can be coupled with almost any type of fiber bundle.


With additional options of an internal energy meter and electromechanical shutter with laser self-test capability, PhotoSonus X can be ready for certification in clinical photoacoustic applications.

High Output Power DPSS Tunable Laser for Photoacoustic Imaging


FEATURES

- Hands-free wavelength tuning from 665 to 1064 nm and 1065 – 2600 nm
- Fully motorized wavelength tuning
- Externally triggerable
- High, up to 65 mJ pulse energy from OPO
- 100 Hz or 50 Hz pulse repetition rate
- Low-cost maintenance
- Certification ready
- Quite operation < 65 dB</p>
- Integrated DPSS pump laser and OPO into a single housing
- Fiber bundle holder with safety interlock
- Signal and Idler through the same output (optional)
- Fast Wavelength Switching of up to 300 nm range between two consecutive pulses (optional)
- Motorized attenuator (optional)
- Integrated energy meter (optional)
- Electromechanical output shutter with laser self-test capability (optional)

PERFORMANCE

Fig 1. PhotoSonus X signal output typical energy at 50 Hz pulse repetition rate

Fig 2. PhotoSonus X signal output typical energy at 100 Hz pulse repetition rate

Picosecond Lasers

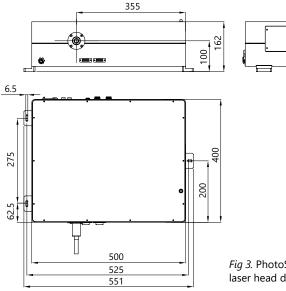
Picosecond Tunable Systems

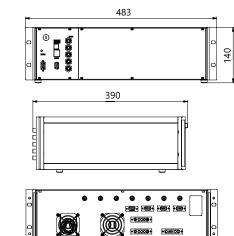
Nanosecond Lasers

PhotoSonus X

SPECIFICATIONS ¹⁾

Model	PhotoSonus X	
OPO		
Wavelength range		
Signal	665 – 1064 nm	
Idler (optional)	1065 – 2600 nm	
OPO output pulse energy 2)	> 50 mJ at 100 Hz or > 65 mJ at 50 Hz	
Pulse repetition rate ³⁾	100 Hz or 50 Hz	
Scanning step		
Signal (665–1064 nm)	0.1 nm	
ldler (1065 – 2600 nm)	1 nm	
Pulse duration ⁴⁾	2 – 5 ns	
Signal linewidth 5)	< 10 cm ⁻¹ at 100 Hz or < 15 cm ⁻¹ at 50 Hz	
Typical signal beam diameter (1/e ²) ⁶⁾	5 ± 1 mm	
Control interfaces	USB, LAN, RS232	
PHYSICAL CHARACTERISTICS		
Cooling	Closed loop air-water cooled 7)	
Unit size (W \times L \times H)	551 × 400 × 162 mm	
Power supply size (W \times L \times H)	2 units, 483 × 390 × 140 mm each	
Umbilical length	2.5 m	
OPERATING REQUIREMENTS		
Room temperature	18 – 27 °C	
Relative humidity	20 – 80 % (non-condensing)	
Power requirements	100 – 240 VAC, single phase 50/60 Hz	
Power consumption	< 2 kW	


- are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 700 nm.
- ²⁾ Free space measurement at 700 nm. See tuning curves for typical outputs at other wavelengths.
- ⁴⁾ FWHM measured with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.
- ⁵⁾ At 700 nm or higher wavelength.
- ⁶⁾ Measured at the free space output at 700 nm wavelength.


#EKSPLA

7) Using external chiller.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

OUTLINE DRAWINGS

ANGE

Fig 3. PhotoSonus X series laser head dimensions

Fig 4. Outline drawing of PhotoSonus X power supply unit

*** EKSPLA**

Femtosecond Lasers

Other Ekspla Products

Unique laser systems for extreme applications

High Intensity Laser Systems

Today laser intensities reached levels where relativistic effects dominate in laser-matter interaction. New applications of high pulse energy lasers emerge in various disciplines ranging from fundamental physics to materials research and life sciences. Ekspla presents line of nanosecond and picosecond high pulse energy lasers and amplifiers. Our broad knowledge in high energy laser physics, non-linear materials and more that 27 years of experience in laser design enables us to offer unique solutions for high pulse energy systems. Our high pulse energy lasers features flash lamp pump for ultra-high pulse energy, diode pump for high average power. Innovative solutions for pulse shaping, precise synchronization between different laser sources enables fit these systems to numerous experiments of modern fundamental science.

SHORT SELECTION GUIDE

Series	Pulse duration	Pulse energy at 1064 nm	Repetition rate, up to	Special feature	Page
UltraFlux	down to 11 fs	up to 50 mJ	1 kHz	Patented fiber based front end	98
APL2100	90 ± 10 ps	up to 2.2 J	10 Hz	DPSS regenerative amplifier	104
APL2200	90 ± 10 ps	up to 130 mJ	1 kHz	High power amplifiers	107
APL4206	90 ± 10 ps	up to 8 channels 130 mJ each	1 kHz	Spatial and temporal beam profiles tailored for OPCPA pumping	110
NL120	2 ± 0.5 ns	up to 10 J	10 Hz	High energy single longitudinal mode Q-switched Nd:YAG laser	112
NL310	4–6 ns	up to 10 J	10 Hz	High pulse energy, cost effective solution	115
NL940	3–10 ns (adjustable)	up to 10 J	10 Hz	Temporaly shaped pulse based on electrooptical modulator driven by programmable arbitrary waveform generator (AWG)	118
ANL	2 – 4 ns	up to 1 J	up to 1 kHz	High energy and high repetition rate DPSS	121
Nd:Glass	500 ps – 20 ns	up to 160 J	1 shot in 1 – 20 min	DPSS master oscillator and Nd:Glass power amplifiers	123
NL941 NL942	5 ns 50 ns	up to 2 J	20 kHz	High energy temporaly shaped DPSS nanosecond lasers	125

For Your convenience, table contains all available options and highest parameter values. Not all output specifications are available at the same time simultaneously. Please refer to the catalog page for exact specifications and available options.

****EKSPLA**

HIGH INTENSITY LASERS

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

UltraFlux FT300 SERIES

UltraFlux FT300 series is a compact high energy tunable wavelength femtosecond laser system which incorporates the advantages of ultrafast fiber laser, solid-state and parametric amplification technologies. Novel OPCPA front-end technology uses the same picosecond fiber laser for seeding both picosecond DPSS pump laser and femtosecond parametric amplifier by spectrally broadened output. This approach greatly simplifies the system excludes femtosecond regenerative amplifier and eliminates the need of pump and seed pulse synchronization. In addition to that, contrast of the output pulses in picosecond to nanosecond time scale is potentially increased.

All UltraFlux series laser systems are assembled on a rigid breadboard to ensure excellent long-term stability. Modular internal design offers high level of customization and easy scalability. These systems can be customized according to customer requirements.

Incorporation of parametric amplification technology together with a novel ultrafast fiber laser helped to create and bring to the market a new tool for femtosecond pump-probe, nonlinear spectroscopy, emerging high harmonic generation experiments and other femtosecond and nonlinear spectroscopy applications. With this laser ultrafast science breakthrough is closer to any photonics lab than ever before.

Tunable Wavelength Femtosecond Laser Systems

FEATURES

- Based on the novel OPCPA (Optical Parametric Chirped Pulse Amplification) technology – simple and cost-efficient operation
- ▶ Patented front-end design (patents no. EP2827461 and EP2924500)
- Hands free wavelength tuning
- ▶ Up to **1 kHz** repetition rate
- Up to 3 mJ pulse energy
 - Excellent pulse energy stability: < 1.5 % rms
 - Excellent long-term average power stability: < 1.5 % rms over > 12 hour period
- ▶ High contrast pulses without any additional improvement equipment

APPLICATIONS

- Broadband CARS and SFG
- Femtosecond pump-probe spectroscopy
- Nonlinear spectroscopy
- High harmonic generation

OPTIONS

- SH/TH harmonics module: SH 375 - 480 nm, TH 250 - 320 nm
- SH/TH/FH harmonics module: SH 375 - 480 nm, TH 250 - 320 nm FH 210 - 230 nm
- Optically synchronized ps output
- PLL (Phase Locking Loop) for precise (<1 ps, rms) locking with external synchronization pulse

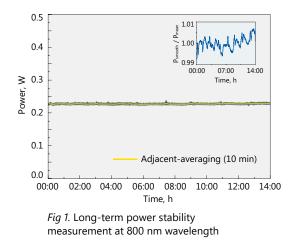
Picosecond Lasers

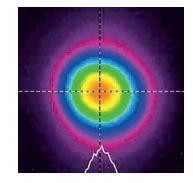
UltraFlux FT300 SERIES

SPECIFICATIONS ¹⁾

Model	UltraFlux FT031k	UltraFlux FT31k	UltraFlux FT310		
MAIN SPECIFICATIONS					
Max. Pulse energy	لى <i>ا</i> 300	3 mJ			
SH output ⁴⁾		20 % conversion at 440 nm			
TH output ⁴⁾	_	5 % conversion at 290 nm			
FH output ⁴⁾		1 % conversion at 220 nm			
Wavelength tuning range					
Standard version	700 – 1010 nm	750 –	960 nm		
SH output ⁴⁾		375 – 4	480 nm		
TH output ⁴⁾	-	250 – 1	320 nm		
FH output ⁴⁾		210 – 230 nm			
Scanning steps					
SH output ⁴⁾		5 nm			
TH output ⁴⁾	-	3 nm			
FH output ⁴⁾		2 nm			
Pulse duration	35 – 60 fs	35 – 60 fs 20 – 60 fs			
Pulse repetition rate	1 kHz		10 Hz		
Pulse energy stability					
Long-term power stability		< 1.5 %, rms			
Spatial mode		Super Gaussian			
Beam diameter (1/e ²)	2 mm	2 mm 7 mm			
Pulse contrast ²⁾	$\geq 10^{-6}$: 1 (within ± 50 ps)				
	≥ 10 ⁻⁸ : 1 (in ns range)				
Polarization	Linear, horizontal				
Beam pointing stability	≤50 µrad, rms				
Optical to RF signal jitter ³⁾		< 1 ps			
Footprint on optical table	1.2 × 0.75 m 1.2 × 2.0 m				

¹⁾ Presented parameters are from delivered systems and can be customized to meet customer's requirements.


²⁾ Pulse contrast is only limited by amplified parametric fluorescence (APF) in the temporal range of ~90 ps which covers OPCPA pump pulse duration and is better than 10⁶ : 1. APF contrast depends on OPCPA saturation level (Fig. below). Our system is ASE-free and pulse contrast value in nanosecond range is limited only by measurement device capabilities (third-order autocorrelator). There are no pre-pulses generated in the system and post-pulses are eliminated by using wedged transmission optics.


³⁾ With -PLL option purchased.

⁴⁾ With SH/TH or SH/TH/FH module.

PERFORMANCE

Fig 2. Typical beam profile of FT031k. Output pulse energy 0.3 mJ at 890 nm

***EKSPLA**

HIGH INTENSITY LASERS

UltraFlux FT300 SERIES

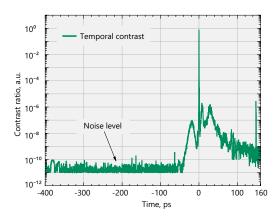


Fig 3. Typical temporal contrast of UltraFlux systems

DELIVERED SYSTEMS

UltraFlux FT310. Customised compact (1.2×0.9 m), fully diode pumped, tunable wavelength femtosecond laser system delivering up to 2.5 mJ pulse energy with pulse duration down to 20 fs. Optically synchronized (low jitter) fs and ps outputs available.

Picosecond Lasers

Femtosecond Lasers

Nanosecond Lasers

High Intensity Lasers

Other Ekspla Products

HIGH INTENSITY LASERS

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

UltraFlux FF/FT 5000 SERIES

UltraFlux FF/FT 5000. Custom high pulse energy femtosecond fixed wavelength laser system delivering up to 40 mJ pulse energy with pulse duration down to 11 fs.

The UltraFlux FF/FT 5000 laser is a 2 TW tabletop femtosecond OPCPA (Optical Parametric Chirped Pulse Amplification) based system operating at 10 Hz. Originally built for ELI-ALPS (Extreme Light Infrastructure – Attosecond Light Pulse Source) in Hungary, this laser is now available for a wide variety of applications.

The master oscillator is a patent pending (EP2827461A2) all-in-fiber Yb fiber picosecond laser seed source with two fiber outputs. One seeds the OPCPA Front-End and another seeds the Picosecond Pump Laser (PPL). Both outputs originate from the same fiber so they are synchronized optically. This approach eliminates the need for a complex temporal synchronization system typically present in other OPCPA systems.

The Nd:YAG Picosecond Pump Laser (PPL) system is comprised of several sub-systems: diode pumped Regenerative Amplifier, diode pumped Preamplifier, two flash lamp pumped Amplifiers, and Second Harmonic Generators which convert fundamental 1064 nm wavelength to 532 nm. PPL outputs four beams at 532 nm and 10 Hz pulse repetition rate. One beam is directed to NOPCPA Front-End subsystem and others are directed to NOCPA stages.

The Front-End NOPCPA (Noncollinear Optical Parametric Chirped Pulse Amplifier) consists of several sub-systems: Picosecond Optical Parametric Amplifier (ps-OPA) amplifying oscillator output pulses, Grating Compressor compressing ps-OPA output pulses, White Light Generator (WLG) broadening the spectrum of ps-OPA output pulses and Femtosecond Non-collinear Optical Parametric Amplifier (fs-NOPA) amplifying WLG output pulses.

The Stretcher sub-system is a Grism (diffraction gratings combined together with prisms) based pulse stretcher, which stretches output pulse from NOPCPA Front-End and Dazzler (Acousto-Optic Programmable Dispersive Filter) for high order phase compensation.

High Energy Tunable Wavelength Femtosecond Laser Systems

FEATURES

- Based on the novel OPCPA (Optical Parametric Chirped Pulse Amplification) technology – simple and cost-efficient operation
- Patented front-end design (patents no. EP2827461 and EP2924500)
- Hands free wavelength tuning
- Up to 1 kHz repetition rate
- ▶ Up to **50 mJ** pulse energy
 - Excellent pulse energy stability: < 1.5 % rms
 - Excellent long-term average power stability: < 1.5 % rms over > 12 hour period
- High contrast pulses without any additional improvement equipment

APPLICATIONS

- Broadband CARS and SFG
- Femtosecond pump-probe spectroscopy
- Nonlinear spectroscopy
- ▶ High harmonic generation
- ▶ Particle acceleration in plasma

Three stages of NOPCPA (Noncollinear Optical Parametric Chirped Pulse Amplifiers) are used to amplify the stretched pulse from the Stretcher up to 50 mJ.

Finally, amplified pulses are compressed down to 11 fs in the Pulse Compressor. Bulk glass compressors are combined together with chirped mirror compressors. Pulse energy after Compressor is >40 mJ.

The built-in Output Diagnostics stage ensures reliable, turn-key operation by monitoring critical parameters such as energy, duration, and beam profile.

UltraFlux FF/FT 5000 SERIES

SPECIFICATIONS ¹⁾

Model	UltraFlux FT5010	UltraFlux FF50100		
MAIN SPECIFICATIONS				
Max. Pulse energy	50 mJ			
SH output ⁴⁾	inqu	ire		
TH output ⁴⁾	inqu	ire		
FH output ⁴⁾	inqu	ire		
Wavelength tuning range				
Standard version	750 – 960 nm, fixed at	desired wavelength		
SH output 4)	375 – 4	80 nm		
TH output ⁴⁾	250 – 3	20 nm		
FH output ⁴⁾	210 – 23	30 nm		
Scanning steps				
SH output ⁴⁾	5 n	5 nm		
TH output ⁴⁾	3 n	3 nm		
FH output ⁴⁾	2 n	m		
Pulse duration	20 – 60 fs	10 – 20 fs		
Pulse repetition rate	10 Hz	100 Hz		
Pulse energy stability	< 1.5 %, rms	< 2.0 %, rms		
Long-term power stability	< 1.5 %	5, rms		
Spatial mode	Super Gaussian	Top-Hat		
Beam diameter (1/e ²)	7 mm	20 mm		
Pulse contrast ²⁾	≥ 10 ⁻⁶ : 1 (wit	$\geq 10^{-6}$: 1 (within ± 50 ps)		
Puise contrast "	$\geq 10^{-8}$: 1 (in ns range)			
Polarization	Linear, hc	Linear, horizontal		
Beam pointing stability	≤50 µra	≤50 μrad, rms		
Optical to RF signal jitter ³⁾	< 1	ps		
Footprint on optical table	1.2 × 2.0 m	1.2 × 4.8 m		

¹ Presented parameters are from delivered systems and can be customized to meet customer's requirements.

²⁾ Pulse contrast is only limited by amplified parametric fluorescence (APF) in the temporal range of ~90 ps which covers OPCPA pump pulse duration and is better than 10⁶ : 1. APF contrast depends on OPCPA saturation level (Fig. below). Our system is ASE-free and pulse contrast value in nanosecond range is limited only by measurement device capabilities (third-order autocorrelator). There are no pre-pulses generated in the system and post-pulses are eliminated by using wedged transmission optics.

³⁾ With -PLL option purchased.

⁴⁾ With SH/TH or SH/TH/FH module.

BLOCK DIAGRAM

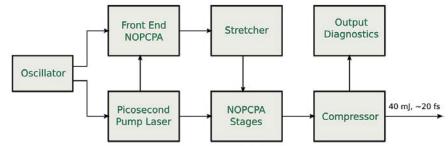
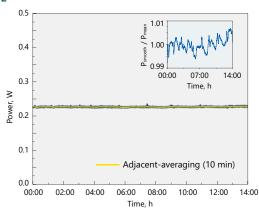
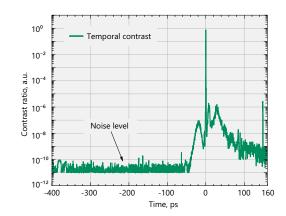



Fig. 1. UltraFlux FF/FT 5000 laser block diagram



UltraFlux FF/FT 5000 SERIES

PERFORMANCE

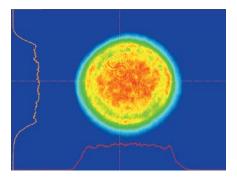


Fig 2. Long-term power stability measurement at 800 nm wavelength

Fig 3. Typical temporal contrast of UltraFlux systems

BEAM PROFILE

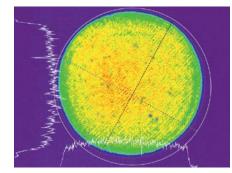


Fig 4. Typical UltraFlux system output at ~60 mJ energy (left) and 532 nm pump beam at 2.5 J energy (right) beam profiles

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

APL2100 SERIES

APL210x series amplifiers are designed to produce up to 2200 mJ picosecond pulses. High pulse energy, excellent pulse-to-pulse energy stability, superior beam quality makes APL210x series picosecond amplifiers well suited for applications like OPCPA pumping, non-linear optics and others. Ekspla can offer a seeder meeting customer's requirements.

Regenerative amplifier / Power amplifier design

APL210x series amplifiers are designed to be seeded by external seeding source. Diode pumped regenerative amplifier ensures amplification of seed signal to stable mJ level pulse for amplification in linear amplifiers. Advanced beam shaping ensures smooth, without hot spots beam spatial profile at the laser output. Low light depolarization level allows high efficiency generation of up to 4th harmonic with optional build-in harmonic generators.

Build-in harmonic generators

Angle-tuned DKDP crystals harmonic generators mounted in temperature stabilized heaters are used for second, third and fourth harmonic generation. Harmonic separation system is designed to ensure high spectral purity of radiation and direct it to the output ports.

Simple and convenient laser control

For customer convenience the amplifier can be controlled through remote control pad or USB interface. The control pad features a backlit display that is easy to read even while wearing laser safety eyewear. Alternatively, the amplifier can be controlled from personal computer with supplied software for Windows[™] operating system. LabVIEW[™] drivers are supplied as well.

Repetition rate and timing of the pulses can be locked to the external RF source (with –PLL option) or other ultrafast laser system (with –FS option).

APL2100 series available models

High Energy Picosecond Amplifiers

FEATURES

- Diode pumped regenerative amplifier
- Seeding of regenerative amplifier with customers super-continuum seeding source
- ▶ Wide selection of seeders available
- ▶ Flashlamp pumped power amplifier
- Advanced beam shaping for high pulse energy
- Thermally induced birefringence compensated design for high pulse repetition rates
- Low jitter synchronisation pulses for streak camera triggering with 10 ps rms jitter (optional)
- Water-water heat exchanger for cooling of pump chambers
- Remote control pad
- Control through CAN or USB interface (RS232 and LAN is optional)
- Optional temperature stabilized second, third and fourth harmonic generators

APPLICATIONS

- OPCPA pumping
- OPG/OPA pumping
- Other spectroscopic and nonlinear optics applications...

Model	Features
APL2101	Delivers 200 mJ, 90 ps pulses at 10 Hz repetition rate
APL2103	Delivers 300 mJ, 90 ps pulses at 10 Hz repetition rate
APL2105	Delivers 550 mJ, 90 ps pulses at 10 Hz repetition rate
APL2106	Delivers 1000 mJ, 90 ps pulses at 10 Hz repetition rate
APL2107	Delivers 2200 mJ, 90 ps pulses at 10 Hz repetition rate

Picosecond Lasers

APL2100 SERIES

SPECIFICATIONS ¹⁾

Model	APL2101	APL2103	APL2105	APL2106	APL2107	
Output energy						
at 1064 nm	200 mJ	300 mJ	550 mJ	1000 mJ	2200 mJ	
at 532 nm ²⁾	100 mJ	150 mJ	250 mJ	500 mJ	1100 mJ	
at 355 nm ³⁾	60 mJ	90 mJ	170 mJ	300 mJ	inquire	
at 266 nm ⁴⁾	20 mJ	30 mJ	60 mJ	100 mJ	inquire	
Pulse energy stability (StdDev) 5)				1	· · ·	
at 1064 nm		1.5 %				
at 532 nm			2	5 %		
at 355 nm				5 %		
at 266 nm				7 %		
Pulse duration (FWHM) ⁶⁾			90 :	± 10 ps		
Pulse repetition rate 7)			1	0 Hz		
Triggering mode			ex	ternal		
Spatial mode ⁸⁾			super-	-Gaussian		
Beam divergence ⁹⁾			< 0.	5 mrad		
Typical beam diameter ¹⁰⁾		~ 11 mm		~ 17 mm	~ 24 mm	
Beam pointing stability ⁵⁾	< ±60 μrad			1		
Pre-pulse contrast			> 2	200 : 1		
Polarization			linear	, > 100 : 1		
INPUT						
Wavelength			100	64 nm		
Pulse duration range (FWHM)			20 -	- 90 ps		
Pulse repetition rate	50 – 95 MHz					
Average power			> 2	20 mW		
PHYSICAL CHARACTERISTICS						
Laser head size (W×L×H)	60	00 × 1500 × 350	mm	600 × 1800 × 350 mm	TBA	
Power supply size (W×L×H)		50 × 600 × 1100 ı		550 × 600 × 1230 mm	TBA	
OPERATING REQUIREMENTS Water service		- 12 1	min balow 20 °C		< 25 l/min, below 20 °C	
		< 12 1/	min, below 20 °C		< 25 i/min, below 20 °C	
Relative humidity				on condensing)		
Operating ambient temperature Mains voltage	22 ± 2 °C 208 or 230 V AC, single phase, 50/60 Hz 220, 380 or 400 V AC, three phases, 50/60 Hz					
Power rating ¹¹⁾	< 2 kVA	< 2 kVA	< 2.5 kVA	< 4.5 kVA	< 12 kVA	
Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative they are indications of typical performar and will vary with each unit we manufac Unless stated otherwise, all specification measured at 1064 nm and for basic syste without options.	Inve, energies. nance 7 Should be specified when ordering. Inquire VISEL AND/OR INVESE for custom pulse repetition rates.			VISILE AND/CR INVISILE LASER RADIATI ANDO PTC OR SAM EPOSULE TO DRECT RECETCO OR SAME DO SAME TO DRECT ANDO PTC OR SAME DO DRECT ANDO PTC OR SAME DATA DO RECT ANDO PTC OR SAME DATA DO RECT ANDO PTC OR SAME DATA DO RECT ANDO PTC OR SAME DATA DO RECT NEW SAME DATA DO RECT CASS IN LASER PRODUCT		
 For APL210x-SH and APL210x-SH/FH op Outputs are not simultaneous. For APL210x-TH option. Outputs are not simultaneous 	options. 1064 nm. ¹⁰ Beam diameter is measured at 1064 nm at					

For APL210x-TH option. Outputs are not simultaneous.

⁴⁾ For APL210x-SH/FH option. Outputs are not simultaneous.

¹¹⁾ Required current rating can be calculated by dividing power rating by mains voltage.

HIGH INTENSITY LASERS

OPTIONS

Option P30. Provides 30±3 ps output pulse duration. Contact EKSPLA for pulse energy specifications.

APL2100 SERIES

- Seeder. Optional seeder can be provided on request.
- Option FS. External seeder input via motorized spectral broadening stage for APL2100 series.
- Option PLL. Precise trigger to external RF signal with jitter < 1 ps.</p>
- ▶ AW Water-air cooling option. Water-air cooling unit or chiller for APL2100 series.
- > 20 Hz option. 20 Hz output at all wavelengths with reduced energy output
- Multiple channel option. Multiple outputs of same or different wavelength/energy are available.

ORDERING INFORMATION

APL2105-P90-10-SH/TH/FH

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Model Pulse duration: P90 \rightarrow 90 ps P30 \rightarrow 30 ps Harmonic generator options: SH \rightarrow second harmonic TH \rightarrow third harmonic FH \rightarrow fourth harmonic

Pulse repetition rate in Hz

Femtosecond Lasers

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

APL2200 SERIES

APL2200 series amplifiers are designed to produce up to 130 mJ picosecond pulses at kilohertz pulse repetition rate. Short pulse duration, excellent pulse-to-pulse stability, superior beam quality makes APL2200 series diode pumped picosecond amplifiers well suited for applications like OPCPA pumping, non-linear optics and others.

Regenerative amplifier / Power amplifier design

APL2200 series amplifiers consist of regenerative amplifier and power amplifiers. System could be seeded by built-in picosecond oscillator or other ultrafast laser system. Pulses from regenerative amplifier are spatially shaped and amplified in double-pass amplifiers with thermally induced birefringence compensation. Advanced optical design ensures smooth, without hot spots beam spatial profile at the laser output. Low light depolarization level allows high efficiency generation of up to 4th harmonic with build-in harmonic generators. Repetition rate and timing of the pulses can be locked to the external RF source (with -PLL option) or other ultrafast laser system (with -FS option).

Build-in harmonic generators

Angle-tuned LBO and/or BBO crystals mounted in temperature stabilized heaters are used for second, third and fourth harmonic generation. Harmonic separation system is designed to ensure high spectral purity of radiation and direct it to the output ports.

Simple and convenient laser control

For customer convenience the amplifier can be controlled through remote control pad or USB interface. Alternatively, the amplifier can be controlled from personal computer with supplied software for Windows[™] operating system. LabVIEW[™] drivers are supplied as well.

High Energy kHz Repetition Rate Picosecond Amplifiers

FEATURES

- ▶ High pulse energy at **kHz** rate
- Diode pumped solid state design
- Cooled by supplied chiller tap water is not required (optional)
- Low maintenance costs
- Remote control pad
- ► PC control via USB with supplied LabVIEW[™] drivers
- Optional temperature stabilized second, third and fourth harmonic generators

APPLICATIONS

- OPG/OPA pumping
- OPCPA pumping
- Other spectroscopic and nonlinear optics applications...

APL2200 series available models

Model	Features
APL2201	Delivers 10 mJ, 90 ps pulses at up to 1 kHz repetition rate
APL2203	Delivers 30 mJ, 90 ps pulses at up to 1 kHz repetition rate
APL2205	Delivers 60 mJ, 90 ps pulses at up to 1 kHz repetition rate
APL2206	Delivers 130 mJ, 90 ps pulses at up to 1 kHz repetition rate

XEKSPLA

APL2200 SERIES

SPECIFICATIONS ¹⁾

Model	APL2201	APL2203	APL2205	APL2206				
Output energy								
at 1064 nm	10 mJ	30 mJ	60 mJ	130 mJ				
at 532 nm ²⁾	5 mJ	15 mJ	30 mJ	70 mJ				
at 355 nm ³⁾	3 mJ	10 mJ	20 mJ	inquire				
at 266 nm ⁴⁾	1 mJ	2.5 mJ	4 mJ	inquire				
Pulse energy stability (StdDev) ⁵⁾								
at 1064 nm	1%							
at 532 nm		1.5	5 %					
at 355 nm		2	%					
at 266 nm		4	%					
Pulse duration (FWHM) ⁶⁾		90±	10 ps					
Pulse repetition rate 7)		1000	0 Hz					
Triggering mode		exte	ernal					
Spatial mode ⁸⁾		super-G	Saussian					
Beam divergence ⁹⁾	< 1 mrad		< 0.7 mrad					
Typical beam diameter ¹⁰⁾	~ 3 mm	~ 5 mm	~ 6 mm	~ 7 mm				
Beam pointing stability ⁵⁾		< 100) µrad					
Pre-pulse contrast	> 100 : 1							
Polarization		linear,	> 95 %					
INPUT								
Wavelength		1064	1 nm					
Pulse duration range (FWHM)		20 fs -	- 90 ps					
Pulse repetition rate		50 – 9	5 MHz					
Average power		>20	mW					
PHYSICAL CHARACTERISTICS								
	55 × 1035 × 242 mm	900 × 1500 × 350 mm	1200 × 2200 × 350 mm	ТВА				
· · · · ·	550 × 600 × 680 mm	550 × 600 × 1100 mm	550 × 600 × 1030 mm	ТВА				
Chiller size (W×L×H)		× 790 mm	500 × 500 × 850 mm	600 × 600 × 600 mm				
. , ,	100 100							
OPERATING REQUIREMENTS								
Water service		not required, air-cooled	1	water-cooled				
Relative humidity			n condensing)					
Operating ambient temperature		22 ±	2 °C	200 at 220 V/AC three				
Mains voltage	208 or 230 V AC, single phase, 50/60 Hz 208 or 230 V AC, the phases, 50/60 Hz 208 or 230 V AC, the phases, 50/60 Hz							
Power rating ¹¹⁾	< 1 kVA	< 5 kVA	< 14 kVA					
Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative; they are indications of typical performance and will vary with each unit we manufactu Unless stated otherwise, all specifications a measured at 1064 nm and for basic system without options. For APL210x-SH and APL210x-SH/FH optic	re. ⁷⁾ Should be sp ire custom pulse ⁸⁾ Gaussian fit : ⁹⁾ Full angle m	for	VOIE AND CE INVESTE LAKE BADARN AND EY OS SIN DEPOSICE TO RECT AND EY OS SIN DEPOSICE TO RECT POSICE AND EY OS SIN DEPOSICE TO RECT POSICE TO RECT PO					
Outputs are not simultaneous. For APL210x-TH option. Outputs are not	¹⁰⁾ Beam diame 1/e ² level.	ter is measured at 1064 nm at						
simultaneous.	1) Required cur	rrent rating can be calculated b	ру					

¹⁰ Required current rating can be calculated by dividing power rating by mains voltage.

Picosecond Lasers

108

*****EKSPLA

⁴⁾ For APL210x-SH/FH option. Outputs are not

simultaneous.

APL2200 SERIES

OPTIONS

- ▶ Option P30. Provides 30±3 ps output pulse duration. Contact EKSPLA for pulse energy specifications.
- > Option FS. External seeder input via motorized spectral broadening stage for APL2100 series.
- Option PLL. Precise trigger to external RF signal with jitter < 1 ps.</p>
- ▶ AW Water-air cooling option. Water-air cooling unit or chiller for APL2100 series.
- ▶ Multiple channel option. Multiple outputs of same or different wavelength/energy are available.

BEAM PROFILE

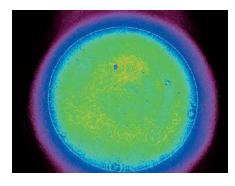
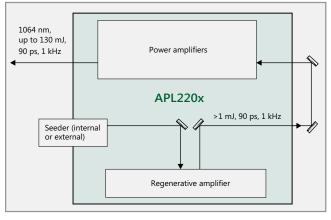
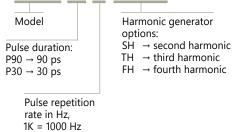


Fig 1. Typical beam profile at APL2200 amplifier output

OPTICAL LAYOUT




Fig 2. Block optical layout of APL2200 series amplifier

ORDERING INFORMATION

Recommended seed laser for 90 ps is PL2210B. For 30 ps pulse duration use PL2210A as seed laser.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

APL2201-P90-1K-SH/TH/FH

 $SH \rightarrow$ second harmonic

Femtosecond Lasers

109

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

APL4206 SERIES

APL4200 series amplifiers are designed to produce multiple outputs of up to 130 mJ picosecond pulses at up to 1 kHz pulse repetition rate. Short pulse duration, excellent pulseto-pulse stability, superior beam quality makes APL4200 series diode pumped picosecond amplifiers well suited for applications like multiple stage OPCPA pumping, non-linear optics and others.

Regenerative amplifier/Power amplifier design

APL4200 series amplifiers consist of regenerative and power amplifiers. System could be seeded by built-in picosecond oscillator or other ultrafast laser system. Pulses from regenerative amplifier are spatially shaped and amplified in doublepass amplifiers with thermally induced birefringence compensation. Advanced optical design ensures smooth, without hot spots beam spatial profile at the laser output. Low light depolarization level allows high efficiency generation of up to

4th harmonic with build-in harmonic generators. Repetition rate and timing of the pulses can be locked to the external RF source (with -PLL option) or other ultrafast laser system (with -FS option).

Simple and convenient laser control

For customer convenience the amplifier can be controlled through Laser Control software via USB interface (control PC included). Alternatively, the amplifier can be controlled from personal computer with supplied software for Windows™ operating system. LabVIEW[™] drivers are supplied as well.

Build-in harmonic generators

Angle-tuned LBO and/or BBO crystals mounted in temperature stabilized heaters are used for second, third and fourth harmonic generation. Harmonic separation system is designed to ensure high spectral purity of radiation and direct it to the output ports.

High Energy Picosecond Amplifiers

FEATURES

- ▶ High pulse energy up to 1 kHz rate
- Diode pumped solid state design
- Cooled by supplied water-to-water chiller
- Low maintenance costs
- PC control via USB with supplied, LabVIEW[™] drivers
- ▶ Optional temperature stabilized second, third and fourth harmonic generators

APPLICATIONS

- Multiple stage OPCPA pumping
- ▶ Non-linear optics
- Other spectroscopic and nonlinear optics applications

Picosecond Lasers

High Intensity Lasers

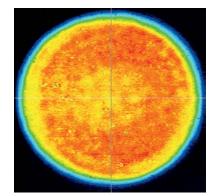
110

APL4206 SERIES

SPECIFICATIONS ¹⁾

Model	APL4206
MAIN SPECIFICATIONS	
Central wavelength	1064 nm
Output energy	up to 8 channels × ≥130 mJ
Pulse energy stability ²⁾	≤1%
Pulse duration (FWHM)	90 ± 10 ps
Pulse repetition rate	1 kHz
Spectral bandwidth	≤ 1 cm ⁻¹
Triggering mode	external
Spatial mode	Top-Hat
Beam divergence	< 0.7 mrad
Beam diameter ³⁾	~ 8 mm
Beam pointing stability ²⁾	< 30 µrad
Beam local intensity fluctuation 4)	< ±15 %
Deviation of spatial parameters between beams	±10 %
Pre-pulse contrast ⁵⁾	> 200:1
Polarization contrast	> 100:1
Polarization	linear, horizontal
PHYSICAL CHARACTERISTICS	
Laser head size (W×L×H)	1500 × 3000 × 400 mm (preliminary)
Power supply size (W×L×H)	553 × 600 × 1200 mm – 1 unit 553 × 600 × 500 mm – 1 unit
OPERATING REQUIREMENTS	
Warm up time	< 30 min
Total water consumption	< 20 l/min, 2 bar, 20 °C
Relative humidity	20-80 % (non condensing)
Operating ambient temperature	22 ± 2 °C
Mains voltage	208, 380 or 400 V AC, three phases, 50/60 Hz
Power rating	< 22 kVA
Cleanness of the room	ISO Class 7 or 10000 as per U.S. Fed Std. 209 (5 VDI 2083, C GMP)

¹⁾ With "-internal oscillator" and "-PLL" options.


²⁾ Rms, measured over 30 s.

³⁾ Beam diameter is measured at the $1/e^2$ level.

⁴⁾ From the average intensity across 80 % of beam cross-section (or beam diameter measured at 1/e² level).

⁵⁾ Peak-to-peak in respect to residual pulses.

BEAM PROFILE

Fig 1. Typical beam profile of APL4206 series laser (measured at the relay image plane)

Femtosecond Lasers

Picosecond Lasers

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

NL120 SERIES

NL120 series electro-optically Q-switched nanosecond Nd:YAG lasers deliver up to 10 J per pulse with excellent stability. The innovative, diode-pumped, self-seeded master oscillator design results in Single Longitudinal Mode (SLM) output without the use of external expensive narrow linewidth seed diodes and cavity-locking electronics. Unlike more common designs that use an unstable laser cavity, the stable master oscillator cavity produces a TEM₀₀ spatial mode output that results in excellent beam properties after the amplification stages.

NL120 series Q-switched nanosecond lasers are an excellent choice for many applications, including OPO, OPCPA or dye laser pumping, holography, LIF spectroscopy, remote sensing, optics testing and other tasks.

For tasks that require a smooth and as close as possible to the Gaussian beam profile, models with improved Gaussian fit are available.

The low jitter of the optical pulse with respect to the Q-switch triggering pulse allows the reliable synchronization between the laser and external equipment.

The optional second (SH) (for 532 nm), third (TH) (for 355 nm) and fourth (FH) (for 266 nm) harmonic generators provide access to shorter wavelengths.

The laser is controlled by a supplied PC via USB port with application for Windows[™] operating system.

In addition, the main settings of the laser can be controlled through an auxiliary remote control pad. The remote pad features a backlit display that is easy to read even when wearing laser safety eyewear.

SLM Q-switched Nd:YAG Lasers

FEATURES

- Up to 10 J pulse energy
- ▶ Diode-pumped, self-seeded Single Longitudinal Mode (SLM) master oscillator
- ► Stable master oscillator cavity producing TEM₀₀ spatial mode output
- Excellent pulse energy stability
- ▶ Up to 10 Hz pulse repetition rate
- 2 ns pulse duration (7, 10 or 25 ns are optional)
- ▶ Temperature stabilized harmonic generator options
- Remote control via keypad
- Laser control from PC via USB port

APPLICATIONS

- Material processing
- ▶ OPO, OPCPA, Ti:Sapphire, dye laser pumping
- ► Holography
- Nonlinear laser spectroscopy
- Optics testing

Picosecond Lasers

Other Ekspla Products

112

High Intensity Lasers

SPECIFICATIONS ¹⁾

Model	NL125	NL128	NL129
Pulse energy ²⁾			
at 1064 nm	1600 mJ	5000 mJ	10000 mJ
at 532 nm ⁴⁾	700 mJ	TBA 3)	TBA ³⁾
at 355 nm ⁵⁾	450 mJ	TBA 3)	TBA ³⁾
at 266 nm ⁶⁾	140 mJ	TBA 3)	TBA 3)
Pulse energy stability (StdDev) 7)		1	
at 1064 nm		< 1 %	
at 532 nm ⁴⁾		< 2 %	
at 355 nm ⁵⁾		< 3 %	
at 266 nm ⁶⁾		< 5 %	
Pulse duration at 1064 nm (FWHM) ⁸⁾	2	± 0.5 ns (7, 10 or 25 ns are option	nal)
Pulse repetition rate		10 Hz	
Linewidth		≤ 0.02 cm ⁻¹ (SLM)	
Polarization at 1064 nm ⁹⁾		linear, > 90 %	
Optical pulse jitter (StdDev) ¹⁰⁾		< 0.2 ns	
Beam spatial profile ¹¹⁾		Hat-Top, > 70 % fit	
Typical beam divergence ¹²⁾		< 0.5 mrad	
Beam pointing stability ¹³⁾		< 25 µrad	
Typical beam diameter ¹⁴⁾	~ 12 mm	~ 20 mm	~ 27 mm
PHYSICAL CHARACTERISTICS			
Laser head size (W \times L \times H)	455 × 1220 × 270 mm	600 × 1500 × 300 mm	600 × 2000 × 300 mm
Power supply size (W × L × H)	550 × 600 × 1030 mm	550 × 600 × 1030 mm 2 units	550 × 600 × 1650 mm 2 units
Umbilical length		2.5 m	1
OPERATING REQUIREMENTS			
Water consumption (max. 20 °C)		< 20 l/min	
Ambient temperature		22 ± 2 °C	
Relative humidity		10 – 80 % (non-condensing)	
Power requirements ¹⁵⁾	220,	380 or 400 V AC, three-phase 50/	'60 Hz
Power consumption	< 5 kVA	< 8 kVA	< 10kVA
Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options. Outputs are not simultaneous. Contact EKSPLA for more information. For NL12×-SH and NL12×-SH/FH options.	 Optional 7, 10 or 25 ns p for pulse energy specifica For models without harm With respect to Q-switch Measured at 1 m distance output. Improved Gaussi available (contact Ekspla Full angle measured at th 1064 nm. Full angle, rms measured 	ations. nonic generators. triggering pulse. e from the laser an fit beam profile is for details). he 1/e ² point at	VISILE AND/OR INVISILE LASER AN AVOID IN CO S AND BUDOURIN TO REFLECTO OS ACATTEMENT RADARDO MARKED SC
• For NL12×-TH option.	¹⁴⁾ Beam diameter is measu		
For NL12×-SH/FH option.	1/e ² level.		
	d when ordering.		

7) Averaged over 30 s.

 $^{\scriptscriptstyle 15)}\,$ Mains should be specified when ordering.

NL120 SERIES

OPTIONS

▶ -P7, -P10 and -P25 options — 7 ns, 10 ns or 25 ns pulse duration

For applications requiring longer pulse duration the laser master oscillator cavity can be modified to produce 7 ns, 10 ns or 25 ns pulses. Note: some of other specifications can be changed. Please contact Ekspla for detailed datasheets.

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NL125-10-P8-SH/TH

Model

Pulse repetition

rate in Hz

Harmonic generator options: $SH \rightarrow second harmonic$ TH \rightarrow third harmonic

Pulse duration options: default \rightarrow 2 ns pulse duration P8 \rightarrow 8±2 ns pulse duration

Picosecond Lasers

Other Ekspla Products

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

NL310 SERIES

High pulse energy NL310 series lasers are targeted for applications like OPO or Ti: Sapphire pumping, material processing and plasma diagnostics. These lasers can produce pulse energies up to 10 J in fundamental wavelength at 10 Hz pulse repetition rate.

For the convenience of customers the NL310 series nanosecond Q-switched laser can be controlled either through a remote keypad or USB-CAN port. The remote keypad allows easy control of all parameters and features a backlit display that is easy to read even wearing laser safety eyewear.

Software for Windows[™] operating system is provided to control the laser from PC. LabView[™] drivers are supplied as well, allowing laser control integration into existing Labview[™] programs. The optional second (SH, 532 nm), third (TH, 355 nm), fourth (FH, 266 nm) and fifth (FiH, 213 nm) harmonic generators can be integrated into laser head or placed outside laser head into auxiliary harmonic generator module. Output wavelength switching is done manually. Motorized wavelength switching is available by request.

Triggering of the laser is possible from built-in internal or external pulse generator. Pulses with TTL levels are required for external triggering. Laser pulses have less than 0.5 ns rms jitter with respect to Q-switch triggering pulse in both cases.

The simple and field proven design ensures easy maintenance and reliable long-term operation of the NL310 series laser.

Optional Relay Imaging for smooth beam profile is available.

High Energy Q-switched Nd:YAG Lasers

FEATURES

- ▶ Up to 10 J output energy
- Better than 0.5% rms pulse energy stability
- ▶ 4–6 ns pulse duration
- 10 or 20 Hz repetition rate
- Temperature stabilized second, third, fourth and fifth harmonic generators
- Remote control via keypad or USB-CAN port
- Low jitter internal/external synchronization
- Robust and stable laser head

APPLICATIONS

- OPO, Ti: Sapphire, dye laser pumping
- Material processing
- Plasma generation and diagnostics
- Nonlinear spectroscopy
- Remote sensing

Nanosecond Tunable Lasers

***EKSPLA**

NL310 SERIES

SPECIFICATIONS ¹⁾

Model	NL311	NL313	NL314	NL315	NL317	NL319	
Pulse energy:							
at 1064 nm	1300 mJ	1600 mJ	2000 / 1800 mJ	3500 mJ	5000 mJ	10000 mJ	
at 532 nm ^{2) 6)}	600 mJ	800 mJ	1000 / 900 mJ	1700 mJ	2500 mJ	5000 mJ	
at 355 nm ^{3) 6)}	390 mJ	490 mJ	610 / 600 mJ	1000 mJ	1300 mJ	2000 mJ	
at 266 nm ^{4) 6)}	130 mJ	180 / 150 mJ	190 / 160 mJ	270 mJ	400 mJ	700 mJ	
at 213 nm ^{5) 6)}	25 / 20 mJ	30 / 25 mJ	40 / 30 mJ		inquire		
Pulse energy stability (StdDev): 7)	-,		.,				
at 1064 nm	0.5 %						
at 532 nm			1.5 %	6			
at 355 nm			2.5 %				
at 266 nm			4.0 %	6			
at 213 nm			6.0 %				
Power drift ⁸⁾			± 2 9				
Pulse duration ⁹⁾		4–6 ns		•	4–7 ns		
Repetition rate		10 / 20 Hz			10 Hz		
Polarization		10 / 20 112	vertical, >	90 %	10 112		
Optical pulse jitter ¹⁰⁾			< 0.5				
Linewidth			< 0.5				
Beam profile ¹¹⁾		"Uat			r field)		
•	~ 10 mm		·Top" (near field), ne 2 mm	~ 18 mm	~ 21 mm	~ 27 mm	
Typical beam diameter ¹²⁾	~ 10 mm	~ 1.			~ 21 mm	~ 27 mm	
Beam divergence ¹³⁾	< 0.5 mrad						
Beam pointing stability ¹⁴⁾			± 50 µ	rad			
PHYSICAL CHARACTERISTICS							
Laser head (W × L × H)	460 × 1250 × 260 mm	310 × 800 × 230 mm / 460 × 1250 × 260 mm	: 1250 × 260 m	m	600 × 1800 × 300 mm		
Power supply unit (W × L × H)		× 653 mm / × 832 mm	553 × 600 × 832 mm / 553 × 600 × 1020 mm	550 × 600 × 550 × 0 1250 mm 1640			
Umbilical length			2.5 r	n			
OPERATING REQUIREMENTS	0 ()	1217 :	12 / 16 / 1		10.17		
Water consumption (max 20 °C) ¹⁵⁾	< 8 / <	12 l/min	< 12 / < 16 l/min		< 12 l/min		
Ambient temperature			22 ± 2				
Relative humidity			20 – 80 % (non-	condensing)			
Power requirements ¹⁶⁾	single phas 220, 380 c	40 V AC, e 50/60 Hz / or 400 V AC, es, 50/60 Hz	220, 380 or three phase				
Power consumption	<2 / <3.5 kVA	<2.5 / <4 kVA	<4 / <5 kVA	<5 kVA	<6 kVA	<8 kVA	
Due to continuous improvement, all specifications subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options.	 wavelength Manual rec ⁷⁾ Averaged f interval aft ⁸⁾ Measured of 	 beam is present at onfiguration is requi rom pulses, emitted er 5–15 minutes of volume pover 8 hours period 	red to switch wavelengt during 30 sec time	h. focusing of h. ¹⁵⁾ Water air details. ¹⁶⁾ Mains vol	am centroid in the element. cooling chiller is p	valuated as moven focal plane of a possible. Inquire fo ecified when orde	
 For -SH harmonic generator option. For -SH/TH harmonic generator option. For -SH/FH, -SH/TH/FH or -SH/FH/FiH harmonic generator option. 	Q-switch tr ¹¹⁾ Near field (¹²⁾ Beam diam	eviation value, meas iggering pulse. at the output apertu eter is measured at		V N R	DANGER VISIBLE AND/OR INVISIBLE LASER RADI VOID EYE OR SKIN EXPOSURE TO DIR GFLECTED OR SCATTERED RADIATION		
 For -SH/FH/FiH harmonic generator option. 	¹³⁷ Full angle r	neasured at the 1/e ²			ld:YAG 1064 nm, 532 nm, 355 nm, 266 Max. 10 J, pulse 4 – 6 ns ILASS IV LASER PRODUCT		

Other Ekspla Products

NL310 SERIES

OPTIONS

- -G option. For models NL311, NL313. Provides beam profile optimized for applications requiring smooth, without hot spots beam profile in the near and medium field. Pulse energies typically are lower by 30% in comparison to standard lasers without -G option.
- ▶ Multimode spatial beam profile for smooth envelope. M² > 20.
- -RLI. Optional Relay Imaging for smooth beam profile.

BEAM PROFILE

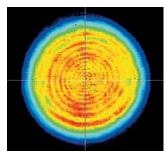


Fig 1. Typical beam profile of NL313 laser output

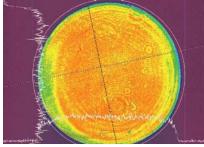
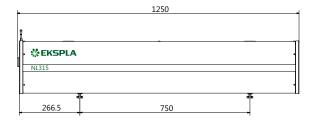



Fig 2. Typical NL319 beam profile after image relay system at 10 J at 1064 nm (with -RLI option)

S

OUTLINE DRAWINGS

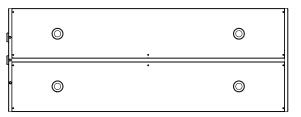


Fig 3. NL315 and NL317 lasers head outline drawing

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NL313-10-SH/TH/FH-AW

Mod	del
Pulse repe rate in Hz	tition

Options: $AW \rightarrow water-air$ heat exchanger

Harmonic generator options: SH \rightarrow second harmonic TH \rightarrow third harmonic

- $FH \rightarrow fourth harmonic$ $FiH \rightarrow fifth harmonic$

Femtosecond Lasers

460

405

Output1

£

100

130

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

NL940 SERIES

Main laser feature is output of temporaly shaped pulses based on electrooptical modulator driven by programmable arbitrary waveform generator (AWG). Pulse shaping resolution is 125 ps, while maximum pulse length is 10 ns. Start of the system is single mode CW laser. Then light is amplified in fiber amplifier, later AWG driven modulator transmits only required temporal shape and duration pulse which is amplified in diode pumped regenerative amplifier in order to reach energy sufficient to amplify in single-pass flash-lamp pumped amplifiers. Power amplifier is a chain of single-pass amplifiers where pulse is amplified up to required energy. During amplification spatial beam shaping is used in order to get flat top shape at the output. Optional second/third harmonic generators are based on angle tuned nonlinear crystals placed in temperature stabilized heaters. High Energy Temporaly Shaped Nanosecond Nd:YAG Lasers

FEATURES

- ▶ Variable temporal pulse shape
- Up to 10 J output energy
- ▶ 10 Hz repetition rate
- ▶ 3-10 ns adjustable pulse duration
- ▶ 1064 or 532 nm output wavelength
- Spatial flat top beam profile
- Fiber front end output amplified in diode pumped regenerative amplifier

APPLICATIONS

- OPCPA pumping
- Front end for power amplifiers
- ▶ Ti: Sapphire pumping
- Laser peening material hardening by laser-induced shock wave
- Plasma and shock physics

Picosecond Lasers

118

NL940 SERIES

SPECIFICATIONS ¹⁾

Model	NL944	NL945	NL949
Pulse energy (rectangular pulse in tim	ne domain 5 ns FWHM)		
at 1064 nm	1.6 J	5 J	10 J
at 532 nm ²⁾	1.0 J	2.5 J	6 J
Pulse energy stability (Std Dev) 3)		-	
at 1064 nm		0.5 %	
at 532 nm		1.0 %	
Power drift ⁴⁾		± 2 %	
Pulse duration ⁵⁾	3-	-10 ns, variable with 125 ps resolut	ion
Repetition rate		10 Hz	
Polarization @ 1064 nm		vertical, > 90 %	
Optical pulse jitter ⁶⁾		< 30 ps	
Linewidth		< 0.1 cm ⁻¹	
Beam profile	Hat-Top	" (at laser output), without diffract	ion rings
Typical beam diameter ⁷⁾	~ 11 mm	~ 22 mm	~ 33 mm
Beam divergence ⁸⁾		< 0.5 mrad	I
Beam pointing stability		±50 μrad	
PHYSICAL CHARACTERISTICS			
Laser head (W \times L \times H)	750 × 1350 × 300 mm	700 × 2100 × 300 mm	1000 × 2100 × 300 mm
Power supply unit (W \times L \times H)	550 × 600 × 840 mm – 1 unit 550 × 600 × 670 mm – 1 unit	550 × 600 × 1220 mm - 2 units	550 × 600 × 1220 mm - 2 units 550 × 600 × 670 mm - 1 unit
Umbilical length			
OPERATING REQUIREMENTS			
Water consumption (max 20 °C)	< 8 l/min		< 40 l/min
Ambient temperature		22 ± 2 °C	
Relative humidity		20 – 80 % (non-condensing)	
Power requirements ⁹⁾	208/240 V AC, single phase, 50/60 Hz or 220, 380 or 400 V AC, three phases, 50/60 Hz	220, 380 or 400 V AC, three phases, 50/60 Hz	
Power consumption	5.5 kW		13.2/6.6 kW
 Due to continuous improvement, all specifications subject to change without nu Parameters marked typical may vary with unit we manufacture. Unless stated otherw all specifications are measured at 1064 nm for basic system without options. For NL94X-SH harmonic generator option Harmonic outputs are not simultaneous; o single wavelength beam is present at the output at once. Manual reconfiguration is required to switch wavelength. Third harmonic available on request. Standard deviation value averaged from 10 	each bandwidth. ise, and Standard deviation value respect to triggering pul Beam diameter is measu laser output at the 1/e ² l each unit we manufactu Full angle measured at t 1064 nm. Mains voltage should be	ee with 600 MHz e, measured with Ise. ured at 1064 nm at evel and can vary with re. the 1/e ² level at	VOIR E ANDOR INVOIR E LARR AUADON AND AN CO SAN DEDORAR TO ORICIN AND AN CO SAN DEDORAR TO ORICIN AND AN CO SAN DEDORAR TO ORICIN AND AN AND AN AND

⁴ Deviation from average value measured over 8 hours of operation when room temperature variation is less than ±2 °C. Picosecond Lasers

Picosecond Tunable Systems

Nanosecond Lasers

Nanosecond Tunable Lasers

NL940 SERIES

BEAM PROFILE

Femtosecond Lasers

Picosecond Lasers

Picosecond Tunable Systems

Nanosecond Lasers

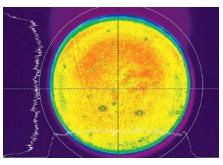


Fig 1. Typical NL949-SH near field beam profile at 5 J at 532 nm

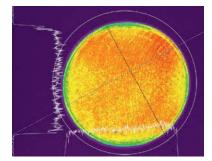


Fig 2. Typical NL945-SH system output beam profile at 532 nm

PERFORMANCE

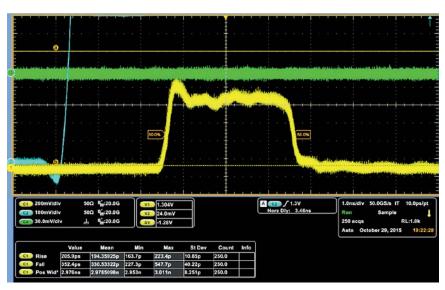


Fig 3. Example of temporal pulse shape, stability of pulse shape and optical pulse jitter

Note: Laser must be

connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Nanosecond Lasers

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

ANL SERIES High Energy and High Repetition Rate DPSS Nanosecond Lasers

ANL series electro-optically Q-switched nanosecond Nd:YAG lasers deliver high energy pulses at high repetition rates.

A diode-pumped Q-switched nanosecond laser, based on industrytested technology is used as a master oscillator of the system. It produces high-intensity, high-brightness pulses and is well suited for further amplification in linear amplifiers for high-energy flat-top output pulses. Employing electro-optical cavity dumping, the master oscillator can produce pulses which are as short as several ns with uniform beam profile and low divergence.

Power amplifiers are a chain of low-maintenance diode-pumped single and double pass amplifiers where pulses are amplified up to the required energy. During amplification, spatial beam shaping is employed in order to get a flat top shape at the output. Optional second and third harmonic generators are based on angle-tuned nonlinear crystals placed in heaters.

For convenience, PC software for Windows[™] (LabVIEW[™] drivers are supplied as well) is used for laser operation, monitoring and internal system diagnostics.

To tailor the laser for specific applications or requirements, various customization possibilities are available such as industrial grade, portable laser housing with integrated power supplies and cooling units.

Highly Customizable to Meet Customer Needs

FEATURES

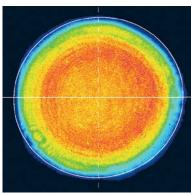
- Up to 1 J at 1064 nm output pulse energy
- ▶ Up to 1 kHz repetition rate
- 2 4 ns or 5 ns pulse duration
- Spatial flat top beam profile
- Low maintenance costs
- Various customizing possibilities to tailor for specific applications
- Optional second and third harmonics generators
- ▶ High efficiency diode pumping chambers
- 1×2 m laser head footprint
- Internal system diagnostics
- Optional industrial grade, portable laser housing with integrated power supplies and cooling units

***EKSPLA**

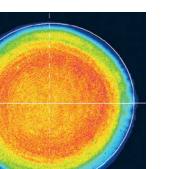
ANL SERIES

SPECIFICATIONS 1)

Model	ANL 2001k	ANL 4001k	ANL 1k200			
MAIN SPECIFICATIONS						
Pulse energy						
at 1064 nm	> 200 mJ	> 400 mJ	> 1000 mJ			
at 532 nm ²⁾		_				
Pulse energy stability (StdDev): ³⁾						
at 1064 nm		1.5 %				
at 532 nm		-				
Power drift 4)		± 2 %				
Pulse duration ⁵⁾	2 -	4 ns	~ 5 ns			
Repetition rate	100	0 Hz	200 Hz			
Polarization at 1064 nm		horizontal				
Optical pulse jitter ⁶⁾		-				
Linewidth		-				
Beam profile	Hat-Top (Hat-Top (at laser output), without diffraction rings				
Typical beam diameter 7)	~6	~6 mm ~10 m				
Beam divergence ⁸⁾	< 1.0	mrad	< 0.5 mrad			
Beam pointing stability		± 30 µrad ³⁾				


PHYSICAL CHARACTERISTICS

Laser head (W \times L \times H)	1000 × 2000 × 490 mm
Power supply unit (W \times L \times H)	553 × 600 × 700 mm
Umbilical length	2.5 m


OPERATING REQUIRE	MENTS
--------------------------	-------

Facility water consumption (max 20° C)	10 l/min 14 l/min 10 l/min				
Ambient temperature	22 ± 2 °C				
Relative humidity	20 – 80 % (non-condensing)				
Power requirements 9)	208, 380 or 400 V AC, three phase, 50/60 Hz				
Power consumption	<10 kW	<12 kW	<6 kW		

- ¹ Due to continuous improvement, all specifications subject to change without notice. Parameters marked typical may vary with each unit we manufacture.Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options.
- $^{\scriptscriptstyle 2)}~$ For NL94X-SH harmonic generator option. Harmonic outputs are not simultaneous; only single wavelength beam is present at the output at once.
- 3) Standard deviation value averaged over 30 s after 20 minutes of warm-up.
- ⁴⁾ Deviation from average value measured over 8 hours of operation when room temperature variation is less than ±2 °C.
- ⁵⁾ Measured with photodiode with 100 ps rise time and oscilloscope with 600 MHz bandwidth.
- 6) Standard deviation value, measured with respect to triggering pulse.
- 7) Beam diameter is measured at 1064 nm at laser output at the 1/e² level and can vary with each unit we manufacture.
- $^{\scriptscriptstyle 8)}$ Full angle measured at the 1/e² level at 1064 nm.
- ⁹⁾ Mains voltage should be specified when ordering.

Typical beam profile of ANL4001k laser

Picosecond Lasers

122

High Intensity Lasers

UltraFlux • APL2100/2200 • APL4206 • NL120 • NL310 • NL940 • ANL • Nd:Glass

Nd:Glass systems

160 J @ 1053 nm MM laser system

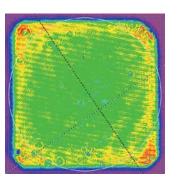
Ekspla offers wide range of high energy Nd:Glass laser systems. Typically Nd:Glass laser comprise SLM diode pumped master oscillator, pre-amplifier, pulse shaper and main lamp pumped amplifiers.

SPECIFICATIONS

Parameter	Value		
Center wavelength	1053 – 1060 nm		
Pulse width	500 ps – 20 ns		
Max pulse energy single channel	160 J		
Beam spatial profile (near field)	"Top Hat" across 80% of beam cross-section (beam local intensity fluctuation max ±20% from the average intensity)		
Pulse repetition rates	depending on system configuration from 1 shot in 1 min to 1 shot in 20 min for output energies >10 J		
Shot to shot stability	below 2.0 % rms @ fundamental in single channel configuration		
Linewidth	$<$ 0.02 cm $^{-1}$ @ 2 ns for single longitudinal mode (SLM), $$<1$ cm ^{-1}$ @ 4 ns for multimode (MM)$		
Pre-pulse contrast	better than 1 : 10 ⁵		
Polarization contrast	> 100 : 1		
Output isolation from back-reflected light	> 500 : 1 (Faraday isolator contrast)		
Optical pulse jitter	typical < 0.2 ns rms, optional < 10 ps rms		
Flashlamp lifetime	2×10 ⁵ shots typical (typically > 3000 hours of non-stop operation at PRR 1 shot/minute)		
Pump diode lifetime	> 10 000 hours typical		

Nanosecond High Energy Laser Systems

FEATURES

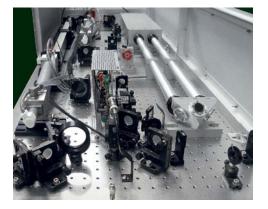

- Front end options
 - Diode pumped SLM or MM master oscillator featuring excellent stability, long lifetime and maintenance-free operation based on Nd:glass or Nd:YLF
 - Temporally shaped seeder / regenerative amplifier configuration allowing application of smoothing technics
 - Wave front correction system based on DFM
- Optional SBS compressor ensuring high contrast pulses and controllable pulse duration
- Flashlamp / LD pumped pre-amplifier
- Up to Ø60 mm aperture Nd:glass power amplifiers
- Laser protection by Faraday isolators preventing damage of laser rods by back-reflected light
- Optimized design for maximum pulse energy extraction
- Separately controlled PFN circuits for each flash lamp
- Diagnostics and monitoring of system status based on microprocessor controller
- Software guide for step-by-step performance check at designated control points

***EKSPLA**

 Optional second and third harmonic generators Picosecond Lasers

Nd:Glass SYSTEMS

PERFORMANCE



Spatial shaping of 33 J @ 1053 nm output pulses (beam of rectangular shape)

w Dat Virtica	HoriziAcq	Tig Display	and the second	March 1986	SAN ALCO ALC	and the second second	hadype	A CALL AND A	Tek 🥃
manin	-	-				and the second	inter		and the state of t
and a second sec									
									1
									1
								N.N.	
						Ŧ.		-	
								N	
								5	
								and the	
							AN COL		
					-	100			
				mon	W	1			
									Man
		1. 2	-						
and market and a	an and the start	A way a way of	co france.						
alestant-		- description des	- لمراجل	al malandandar	- index	index index	-	and a standard and a	in the local and
30.0mV/		500 W12.00						24.9mV	2.0as/div 50.000/s 20.0p
500mV/d	iv :	500 \$12.1G							Preview Sample
	Value	Mean	Min	Max	St Dev	Count	Info		0 acqs F8L:1.0 Auto February 28, 2017 15
CO Pos Wid		6.1352n	6.3350	6.3350	0.0	1.0			Aug. 1000 1000 100 100 100 100
	199.9ps	199.87871p	195.9p	199.9p	0.0	1.0			
Es. Fall				8.34	0.0	1.0			
G Rite	8.3ms	8.1005n	8.31	8.26	0.0	1.0			

One example of the pulse wave form at the output @ 33 J (fundamental)


CUSTOM INSTALATIONS

Amplifier system delivering 1 J at center wavelength 1060 nm, pulse width 800 ps and ~ 4 nm (FWHM) gain bandwidth

12 J @ 527 nm laser system during development stage

30 J Nd:glass system featuring arbitrary shaped temporal pulse shape

Picosecond Lasers

124

NL941 SERIES High Energy Temporaly Shaped DPSS Nanosecond Lasers

NL941 and NL942-SH lasers were designed and manufactured according custom request and are used for plasma research. They are good examples of what can be achieved when long time experience and latest technologies are put together.

Main laser feature is output of temporaly shaped pulses based on electrooptical modulator driven by programable arbitrary wave generator (AWG). Pulse shaping resolution is 125 ps and pulse duration up to 50 ns. Start of the system is a single mode CW laser. Then light is amplified in fiber amplifier, later AWG driven modulator transmits only required temporal shape and duration pulse which is amplified in diode pumped regenerative amplifier in order to reach energy level sufficient to amplify in single-pass / double-pass diode pumped amplifiers. Diode pumping enables generating bursts of pulses with up to 20 kHz frequency in burst mode.

Power amplifier is a chain of diode pumped single-pass amplifiers where pulse is amplified up to required energy. During amplification spatial beam shaping is employed in order to get a flat top shape at the output. Optional second and third harmonic generators are based on angle tuned nonlinear crystals placed in heaters.

Tailored according to specific requirements

NL941 FEATURES

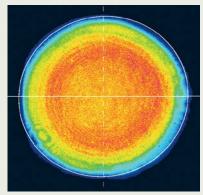
- Up to 2 J at 1064 nm output pulse energy
- Bursts of up to 30 pulses at 1 kHz repetition rate or 4 pulses at
 20 kHz repetition rate in 20 sec periods available in burst mode
- **5 ns** pulse duration
- ▶ Spatial flat top beam profile
- Temporal shaping by pulse processing with electrooptical modulator driven by arbitrary wave generator (AWG)
- High efficiency diode pumping chambers
- ▶ 1×2 m laser head footprint

NL942-SH FEATURES

- Two outputs up to 1.7 J at 1064 nm each
- Two outputs up to 0.9 J at 532 nm each
- ▶ 100 Hz repetition rate
- **50 ns** pulse duration
- Spatial flat top beam profile
- Temporal shaping by pulse processing with electrooptical modulator driven by arbitrary wave generator (AWG)
- Internal system diagnostics
- High efficiency diode pumping chambers
- Industrial grade, portable laser housing with integrated power supplies and cooling unit

***EKSPLA**

Picosecond Lasers


HIGH ENERGY LASERS

NL941 SERIES

SPECIFICATIONS 1)

Model	NL941	NL942-SH	
MAIN SPECIFICATIONS			
Pulse energy			
at 1064 nm	2000 mJ 2 × 1700 m		
at 532 nm ²⁾	-	2 × 900 mJ	
Pulse energy stability (StdDev): ³⁾			
at 1064 nm	1.0 %	1.0 %	
at 532 nm	-	2.0 %	
Power drift ⁴⁾	± 2 %		
Pulse duration ⁵⁾	5 ns	50 ns	
Repetition rate	bursts of 20 kHz every 20 s	100 Hz	
Polarization at 1064 nm	vertical, > 90 %		
Optical pulse jitter 6)	< 30 ps		
Linewidth	< 1 cm ⁻¹		
Beam profile	Hat-Top (at laser output), without diffraction rings		
Typical beam diameter ⁷⁾	~12 mm	~10 mm	
Beam divergence ⁸⁾	< 0.5 mrad		
Beam pointing stability	± 50 μrad		
PHYSICAL CHARACTERISTICS			
Laser head (W \times L \times H)	1000 × 2000 × 400 mm	1000 × 2000 × 1800 mm	
Power supply unit (W \times L \times H)	550 × 600 × 500 mm	_	
Umbilical length	3 m	-	
OPERATING REQUIREMENTS			
Facility water consumption (max 20° C)	8 l/min	20 l/min	
Ambient temperature	22 ± 2 °C		
Relative humidity	20 – 80 % (non-condensing)		
Power requirements ⁹⁾	208/240 V AC, single phase 50/60 Hz or 220, 380 or 400 V AC, three phases 50/60 Hz	208, 380 or 400 V AC, three phase, 50/60 Hz	
Power consumption	2.0 kW	9.4 kW	

- Due to continuous improvement, all specifications subject to change without notice. Parameters marked typical may vary with each unit we manufacture.Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options.
- ²⁾ For NL94X-SH harmonic generator option. Harmonic outputs are not simultaneous; only single wavelength beam is present at the output at once.
- ³⁾ Standard deviation value averaged over 30 s after 20 minutes of warm-up.
- $^{\rm 4)}$ Deviation from average value measured over 8 hours of operation when room temperature variation is less than ±2 °C.
- ⁵⁾ Measured with photodiode with 100 ps rise time and oscilloscope with 600 MHz bandwidth.
- ⁶⁾ Standard deviation value, measured with respect to triggering pulse.
- $^{\eta}~$ Beam diameter is measured at 1064 nm at laser output at the 1/e² level and can vary with each unit we manufacture.
- $^{\scriptscriptstyle 8)}$ Full angle measured at the 1/e² level at 1064 nm.
- ⁹⁾ Mains voltage should be specified when ordering.

Typical beam profile of ANL4001k laser

High Energy Lasers Other Ekspla Products

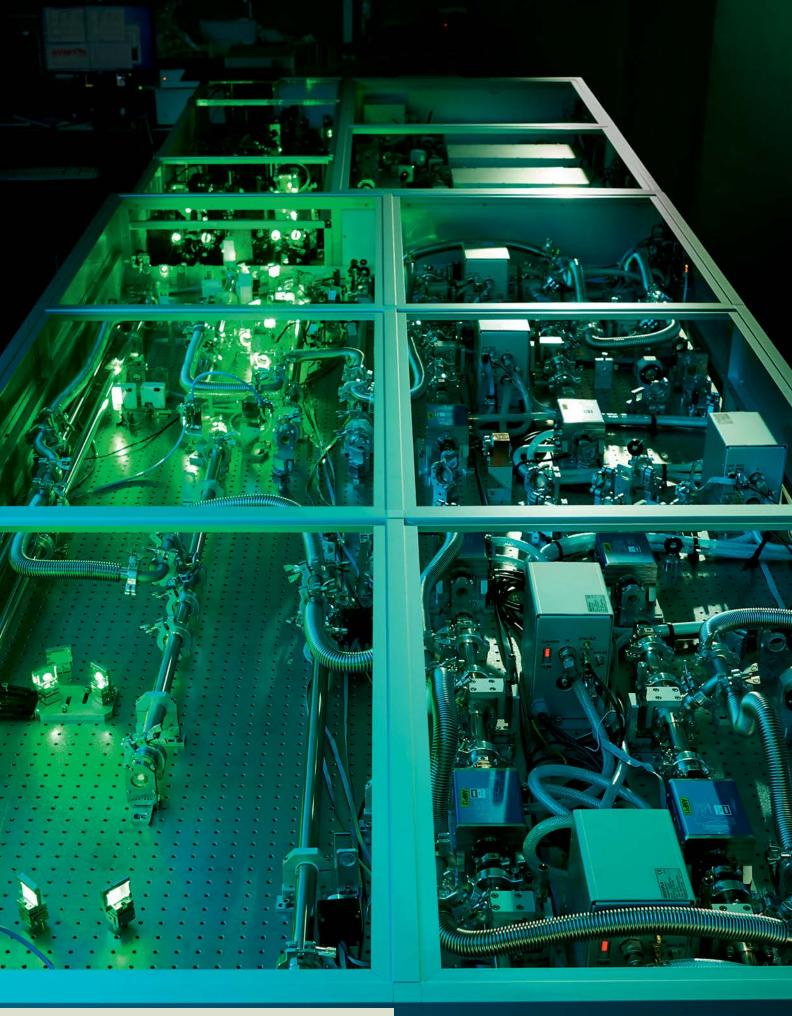
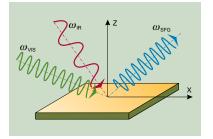


Photo: Unique OPCPA based laser system, providing **5 terawatts** of output power at **1 kHz** repetition rate has been produced by Ekspla and Light Conversion led consortium

Laser Spectroscopy Systems

SFG SPECTROMETER


Principle of Operation

Sum Frequency Generation Vibrational Spectroscopy (SFG-VS) is a powerful and versatile method to characterize vibrational bonds of molecules at surfaces or interfaces. Sum Frequency signal (SF) is generated in visible spectral range, so it can be efficiently measured using sensitive detectors. In SFG-VS experiment a pulsed tunable infrared IR (ω_{IR}) laser beam is mixed with a visible VIS (ω_{VIS}) beam to produce an output at the sum frequency (ω_{SFG} = ω_{IR} + ω_{VIS}). SFG is second order nonlinear process, which is allowed only in media without inversion symmetry. At surfaces or interfaces

System Components

- Picosecond mode-locked Nd:YAG laser
- Multichannel beam delivery unit
- Picosecond optical parametric generator
- Spectroscopy module
- Monochromator
- PMT based signal detectors
- Data acquisition system
- Dedicated LabView[®] software package for system control

inversion symmetry is necessarily broken, that makes SFG highly surface specific. As the IR wavelength is scanned, active vibrational modes of molecules at the interface give a resonant contribution to SF signal. The resonant enhancement provides spectral information with resolution < 6 cm⁻¹ on surface characteristic vibrational transitions.

SFG Spectrometer Modifications

- Double resonance SFG spectrometer – allows investigation of vibrational mode coupling to electron states at a surface
- Phase sensitive SFG spectrometer intensity and phase of the Sum Frequency Generation is measured
- SFG microscope provides spectral and distribution information on the surface with micrometers resolution

Picosecond Vibrational Sum Frequency Generation Spectrometer

FEATURES

- Intrinsically surface specific
- ► Selective to adsorbed species
- < 6 cm⁻¹ (optional < 2 cm⁻¹) spectral resolution
- Sensitive to submonolayer of molecules
- Applicable to all interfaces accessible to light
- Nondestructive
- Capable of high spectral and spatial resolution

APPLICATIONS

- Investigation of surfaces and interfaces of solids, liquids, polymers, biological membranes and other systems
- Studies of surface structure, chemical composition and molecular orientation
- Remote sensing in hostile environment
- Investigation of surface reactions under real atmosphere, catalysis, surface dynamics
- Studies of epitaxial growth, electrochemistry, material and environmental problems

Optional Accessories

- Single or double wavelength VIS beam: 532 nm and/or 1064 nm
- One or two detection channels: main signal and reference
- Second harmonic generation surface spectroscopy option
- High resolution option down to 2 cm⁻¹
- Motorized VIS, SFG and IR beams polarisation control

SFG SPECTROMETER

SPECIFICATIONS ¹⁾

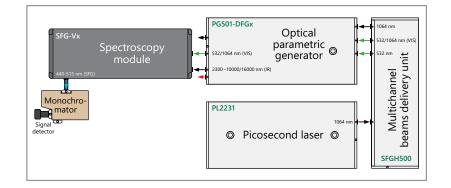
Version	SFG Classic	SFG Advanced	SFG Double resonance	SFG Phase sensitive	SFG Microscope
SYSTEM (GENERAL)					
Spectral range	1000 – 4300 cm ⁻¹	625 – 4300 cm ⁻¹	1000 – 4300 cm ⁻¹	1000 – 4300 cm ⁻¹	2000 – 4300 cm ⁻¹
Spectral resolution	<6 cm ⁻¹ (optional <2 cm ⁻¹)	<6 cm ⁻¹ (optional <2 cm ⁻¹)	<10 cm ⁻¹	<6 cm ⁻¹ (optional <2 cm ⁻¹)	<6 cm ⁻¹
Spectra acquisition method	Scanning				
Sample illumination geometry	Top side, reflection (optional: bottom side, top-bottom side)		Top side, reflection		
Incidence beams geometry	Co-propagating, non-colinear				
Incidence angles	Fixed, VIS ~60°, IR ~55° (optional: tunable)		Fixed, VIS ~60°, IR ~55°		
VIS beam wavelength	532 nm (optional: 1064 nm)	532 nm (optional: 1064 nm)	532 nm and tunable 420 – 680 nm (optional: 210 – 680 nm)	532 nm	
Polarization (VIS, IR, SFG)	Linear, selectable "s" or "p", purity > 1:100				
IR Beam spot on the sample	Selectable, ~150 – 600 µm		Fixed	Fixed, ~1000 µm	
Sensitivity	Air-water spectra		Solid sample		
PUMP LASERS 2)					
Model	PL2230 PL2230, c		PL2230, dual output	PL2230	
Pulse energy	Optimised to pump PG				
Pulse duration	28±3 ps				
Pulse repetition rate	50 Hz				
OPTICAL PARAMETRIC GE	NERATORS				
IR source with standard linewidth (<6 cm ⁻¹)	PG501-DFG1P PG501-DFG2 PG501-DFG1P				
IR source with narrow linewidth (<2 cm ⁻¹)	PG511-DFG	PG511-DFG2	inquire	PG511-DFG	inquire
UV-VIS source for Double resonance SFG	_		PG401 (optional: PG401-SH)	-	-
Double resonance SFG For standard specifications please	check the brochure of pa	rticular model.	(optional: PG401-SH)		

PHYSICAL DIMENSIONS (FOOTPRINT)				
Standard	2400 × 1000 mm	3000 × 1500 mm	2600 × 1200 mm	
Extended (with special options or large accessories)	2700 × 1200 mm	3000 × 1500 mm	2700 × 1200 mm	

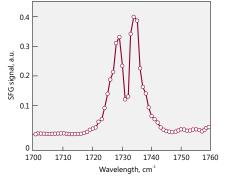
¹⁾ Due to continuous improvement, all specifications are subject to change without advance notice. Please ask for separate brochure.

²⁾ Laser is optimised for pumping parametrical generator, maximum output energy may be different than specified for stand alone application.

AVAILABLE INTEGRATED SFG SYSTEMS


- Classic (Advanced) + Phase sensitive in one unit.
- Classic (Advanced) + Microscope in one unit.

Picosecond Lasers



SFG SPECTROMETER

SPECTROMETER LAYOUT

EXAMPLES OF SFG SPECTRA

Fig 1. SFG spectra of monoolein surface, 1 cm⁻¹ scan step, 200 acquisitions per step. *Courtesy of EKSPLA Ltd.*

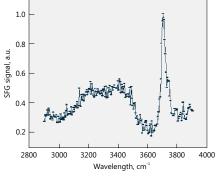


Fig 2. Water-air interface spectra, 200 acquisitions per step. Courtesy of University of Michigan

EXAMPLE OF MODIFICATIONS

SFG spectroscopy module. Classic + Phase sensitive versions in one unit

Classic (Advanced) + Microscope in one unit

Picosecond Lasers

Industrial DPSS Lasers

Short Pulse and High Power

FEATURES

- Rugged and stable
- Picosecond pulse duration
- 1064, 532 or 355 nm output wavelength

APPLICATIONS

- ► Drilling ► Trimming
- Cutting
- ► Structuring
- Ablation
- Patterning
- Inspection
 Marking

Engraving

- Micromachining
- Other material processing

▶ Mask repair

Amplifier seeding

▶ OPO pumping

▶ Cleaning

Ultrafast Fiber Lasers LightWire & FemtoLux 3 series

APPLICATIONS

- ► Ultrafast spectroscopy
- ▶ Time-domain terahertz spectroscopy
- Seeding solid state amplifiers
- Seeding femtosecond CPA systems
- ▶ Ultrafast spectroscopy and microscopy
- Metrology

- Marking and structuring
- ▶ Micromachining
- Ophtalmologic surgery
- Photopolymerization
- ▶ Biological Imaging
- Pumping femtosecond OPO/OPA

***EKSPLA** REV. 20200330 SAVANORIU AV. 237, LT-02300 VILNIUS, LITHUANIA TEL+370 5 2649629 E-MAIL SALES@EKSPLA.COM WWW.EKSPLA.COM

Picosecond Lasers

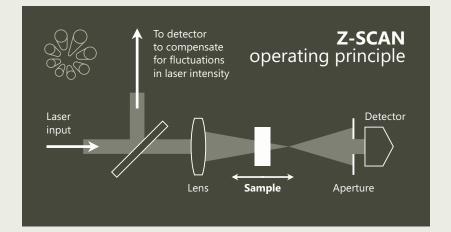
Sylos1

6

Photo: Unique OPCPA based laser system, providing ~5 terawatts of output power at 1 kHz repetition rate has been produced by Ekspla and Light Conversion consortium. Sylos 1 named system is generating 7 fs or shorter pulses and was designed and built for Extreme Light Infrastructure – Attosecond Light Pulse Source facilities (ELI-ALPS) located in Szeged, Hungary

Application examples

Scientific Applications


Z-SCAN Nonlinear Materials Optical Parameters Measurement	137
LIDAR	
Light Detection and Ranging	138
LIBS	
Laser Induced Breakdown Spectroscopy	139
SFG Spectroscopy	
Sum Frequency Generation Vibrational Spectroscopy	140
SHG Spectroscopy	
Second Harmonic Generation Spectroscopy	141
OPCPA Seeding	
Seeding of Femtosecond Laser Systems	141
Photoacoustic Imaging	
High Contrast in Vivo Imaging Technique	142
Ultra-High Intensity	
Building of Ultra High Intensity Laser Systems	142

For reference articles and more useful information visit https://ekspla.com/applications/

Picosecond Lasers

Z-SCAN

In nonlinear optics, z-scan technique is used to measure the non-linear index n_2 (Kerr nonlinearity) and the non-linear absorption coefficient $\Delta \alpha$ via the "closed" and "open" methods to measure both real and imaginary components of the nonlinear refractive index.

For measuring the real part of the nonlinear refractive index, the z-scan setup is used in its closed-aperture form. The sample is typically placed in the focal plane of the lens, and then moved along the z axis, defined by the Rayleigh length. In this form, since the nonlinear material reacts like a weak z-dependent lens, the far-field aperture makes it possible to detect small beam distortions in the original beam. Since the focusing power of this weak nonlinear lens depends on the nonlinear refractive index, it is possible to extract its value by analyzing the z-dependent data acquired by the detector and by interpreting them using an appropriate theory.

For measurements of the imaginary part of the nonlinear refractive index, or the nonlinear absorption coefficient, the z-scan setup is used in its open-aperture form. In openaperture measurements, the far-field aperture is removed and the whole signal is measured by the detector. By measuring the whole signal, the beam small distortions become insignificant and the z-dependent signal variation is due to the nonlinear absorption entirely.

The main cause of non-linear absorption is two-photon absorption. Due to high pulse intensity and cost effectiveness, picosecond high energy lasers are the most appropriate choice for z-scan measurements.

Laser Spectroscopy

RELATED PRODUCTS

PGx01

High Energy Broadly Tunable Picosecond OPA

Page **32**

PL2250

Flashlamp Pumped Picosecond Nd:YAG Lasers

Page **21**

PGx03

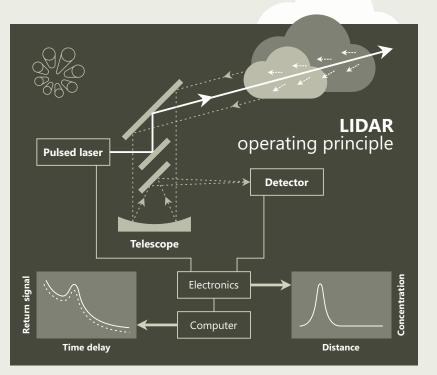
Picosecond kHz Repetition Rate Broadly Tunable OPA

Page 36

PL2210

Diode Pumped Picosecond kHz Pulsed Nd:YAG Lasers

Page 14


Picosecond Lasers

***EKSPLA**

138

LIDAR is an acronym for "LIght Detection And Ranging". LIDAR sends out short laser pulses into the atmosphere, where all along its path, the light is scattered by small particles, aerosols, and molecules of the air and is collected by telescope for analysis. Due to the constant velocity of light, time is related to the scatter's distance, therefore, the spatial information is retrieved along the beam path. LIDAR uses ultraviolet, visible, or near infrared light to image objects. It can target a wide range of materials, including nonmetallic objects, rocks, rain, chemical compounds, aerosols, pollutants, clouds, and even single molecules. LIDAR especially helps in those cases where access with conventional methods is troublesome.

Laser Spectroscopy

RELATED PRODUCTS

NL230 High Energy Q-switched DPSS Nd:YAG Lasers

Page **54**

NL300

Compact Flash-lamp Pumped Q-switched Nd:YAG Lasers

Page **57**

NT230 High Energy Broadly Tunable DPSS Lasers

Page **68**

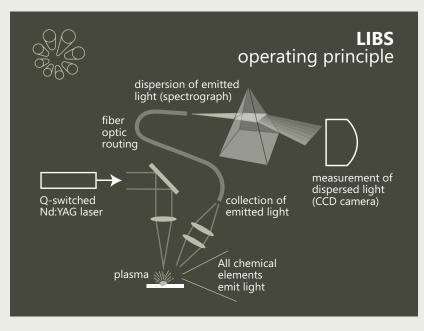
NT242 Broadly Tunal

Broadly Tunable kHz Pulsed DPSS Lasers

Page **72**

NT342

High Energy Broadly Tunable Lasers


Page **82**

NT350 High Energy

High Energy NIR Range Tunable Lasers

Page 86

LIBS

Laser-induced breakdown spectroscopy (LIBS) utilizes a high intensity short laser pulse to convert a very small amount of target material to plasma for optical analysis of the spectra. LIBS can be used on solid, liquid, or gas samples, and, depending on the spectrograph and detector, can detect all elements. LIBS is noncontact, so it can be used in a wide variety of environments, including remote analysis and micro-sampling.

When coupled with appropriate optics and stages, elemental maps of a surface can be created. Multiple LIBS scans can effectively resolve material composition throughout the volume, building a full three dimensional elemental map.

Laser Spectroscopy

RELATED PRODUCTS

NL300

Compact Flash-lamp Pumped Q-switched Nd:YAG Lasers

Page **129**

NL310

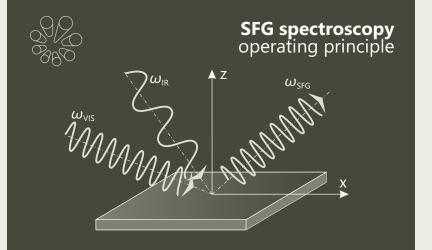
High Energy Q-switched Nd:YAG Lasers

Page **17**

NL230 High Energy Q-switched DPSS Nd:YAG Lasers

Page **32**

Picosecond Lasers



*** EKSPLA**

Picosecond Tunable Systems

Picosecond Lasers

Sum frequency generation vibrational spectroscopy (SFG-VS) is used to characterize vibrational bonds of molecules at surfaces or interfaces. SFG spectroscopy is particularly attractive because of molecular specificity and intrinsic interfacial sensitivity. Surface sensitivity of the technique arises from the fact that within the electric dipole approximation the nonlinear generation of the sum-frequency (SF) signal from the overlapped visible and infrared beams is forbidden in the media of randomly oriented

molecules or in the centrosymmetric media but is allowed at the interface where inversion symmetry is broken. Molecular specificity emerges from the ability to record vibrational spectrum.

In SFG-VS measurements, a pulsed tunable infrared IR (ω_{IR}) laser beam is mixed with a visible VIS (ω_{VIS}) beam to produce an output at the sum frequency ($\omega_{SFG} = \omega_{IR} + \omega_{VIS}$). SFG signal is generated in visible spectral range, so it can be efficiently measured using sensitive detectors (PMT or CCD).

Laser Spectroscopy

RELATED PRODUCTS

SFG

Sum Frequency Generation (SFG) Vibrational Spectrometer

Page 129

PL2230

Diode Pumped High Energy Picosecond Nd:YAG Lasers

Page **17**

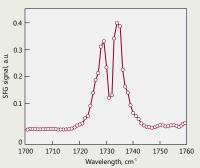
PGx01

High Energy Broadly Tunable Picosecond OPA

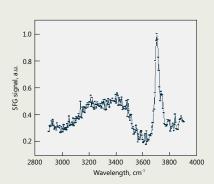
Page **32**

PGx03

Picosecond kHz Repetition Rate **Broadly Tunable OPA**


Page **36**

PGx11


Transform Limited Broadly **Tunable Picosecond OPA**

Page 39

EXAMPLES OF SFG SPECTRA

SFG spectra of monoolein surface, 1 cm⁻¹ scan step, 200 acquisitions per step. Courtesy of EKSPLA Ltd.

Water-air interface spectra, 200 acquisitions per step. Courtesy of University of Michigan

SHG spectroscopy

Second harmonic generation (SHG) is a second order nonlinear optical effect where two photons of frequency ω are converted to one photon of frequency 2ω . SHG is allowed only in media without inversion symmetry.

SHG is a sensitive method used to characterize molecules at surfaces or

interfaces because inversion symmetry is broken at the interface.

SHG measurements provide information about: surface coverage, molecular orientation, adsorbtiondesorbtion processes, and reactions at interfaces.

Laser Spectroscopy

RELATED PRODUCTS

PL2230

Diode Pumped High Energy Picosecond Nd:YAG Lasers

Page **17**

PGx01

High Energy Broadly Tunable Picosecond OPA

Page **32**

PGx03

Picosecond kHz Repetition Rate Broadly Tunable OPA

Page **36**

Picosecond Lasers

OPCPA Seeding

A compact femtosecond wavelengthtunable OPCPA system can be built by using a novel front-end, which incorporates a spectrally broadened picosecond all-in-fiber oscillator for seeding picosecond diode-pumped solid-state (DPSS) regenerative amplifier and WLC generator. This approach eliminates the need of seed and pump pulse synchronisation therefore greatly simplifying the system and uses all-parametric femtosecond pulse amplification stages potentially increasing the temporal contrast of final pulses.

Lasers for Seeding and Pumping

RELATED PRODUCTS

APL2100

High Energy Picosecond Amplifiers

Page **104**

APL2200

High Energy kHz Picosecond Amplifiers

Page **107**

Ultra-High Intensity

Ultra-high intensity laser applications span a number of scientific disciplines, such as plasma physics and fusion research, atomic molecular & optical physics, femtosecond chemistry, astrophysics, high energy physics, materials science, biology, and medicine. Areas where a strong impact is possible include:

- / High harmonic generation and attosecond science
- / Relativistic effects in interactions with atoms, molecules and electrons
- / Ultrafast X-ray science/ High density science
- / Fusion energy research
- / Particle accelerators
- / Thomson scattering

High Energy Applications

RELATED PRODUCTS

UltraFlux

Tunable Wavelength Femtosecond Laser System

Page **98**

High Intensity Laser Systems

Page **97**

Photoacoustic Imaging

Photoacoustic imaging is a valuable high-contrast in vivo imaging technique for pre-clinical and clinical applications. This technique uses laser-induced ultrasound.

Ultrasound signal is generated in tissue, when it absorbs laser light and expands thermo-elastically, and

EXAMPLE OF PHOTOACOUSTIC IMAGES

their waves are detected by ultrasonic transducers. 2D or 3D images are then reconstructed from the accumulated data.

Laser sources for photoacoustic imaging include LPSS OPOs, DPSS OPO systems.

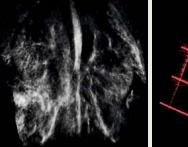
Biomedical Applications

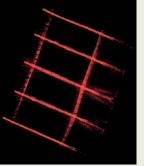
RELATED PRODUCTS

PhotoSonus

Mobile High Energy Tunable Laser System for Photoacoustic Imaging

Page **92**


PhotoSonus X


Tunable Wavelength NIR Range DPSS Laser

Page **94**

NT350 High Energy NIR Range Tunable Lasers

Page **86**

Courtesy of PhotoSound Technologies, Inc.

Femtosecond Lasers

Nanosecond Lasers

Nanosecond Tunable Lasers

Ordering Information

Delivery	Products are made and dispatched within agreed term. Shipping charges are object of agreement between EKSPLA and customer.
Ordering	Orders may be placed by mail, fax or e-mail. All orders are object of General Sales Conditions, which can be found on www.ekspla.com . Mail orders should be sent to:
	EKSPLA, UAB Savanoriu Av. 237 LT-02300 Vilnius Lithuania Phone: +370 5 264 96 29 Fax: +370 5 264 18 09 E-mail: sales@ekspla.com
	Ask for quotation online at www.ekspla.com.
Certicate of Origin	All items shown in this catalogue are of Lithuanian Origin (EU). Certificate of Origin is available under request.
Warranty	All products are guaranteed to be free from defects in material and workmanship. The warranty period depends on the product and is object of agreement between EKSPLA and customer. Warranty period can be extended by separate agreement. EKSPLA does not assume liability for unproper installation, labour or consequential damages.
Specifations	Due to the constant product improvements, EKSPLA reserves its right to change specifications without advance notice.

For latest information visit www.ekspla.com.

Notes

Picosecond Lasers

lcts

本 社:〒134-0088 東京都江戸川区西葛西 6-18-14 T. I. ビル TEL: 03-3686-4711 FAX: 03-3686-0831 大阪営業所:〒532-0003 大阪市淀川区宮原 4-1-46 新大阪北ビル TEL: 06-6393-7411 FAX: 06-6393-7055 Web:https://www.tokyoinst.co.jp/ E-mail: sales@tokyoinst.co.jp Savanorių Av. 237 LT-02300 Vilnius Lithuania

ph. +370 5 264 96 29 fax +370 5 264 18 09 sales@ekspla.com www.ekspla.com

ISO9001 Certified