Newest modular 3D Imaging Raman Microspectroscopy System

Simple operation and low cost with all the basic features of our top of the line *Nanofinder*[®]30 system.

Structural images of transparent samples (plastic, film, organic EL) with Raman and fluorescence spectroscopy.

High Performance, Compact Size, Low cost

Features

- Raman imaging with 300 nm spatial resolution.
- High sensitivity: 4th order Raman Si peak can be detected in less than 1 min. using a low intensity laser (4 mW)
- Confocal laser microscope designed for 3D Raman.
- Compact Raman optical system directly coupled to the microscope for high stability.
- No need adjustment because no moving parts.
- nm positional accuracy with piezo X-Y-Z stage.
- Modular optical system, spectrometer/CCD and laser.
- The simpler successor to the Nanofinder[®]30 using the same powerful software.
- 1.5 x improvement in spatial resolution using deconvolution software.

Head Office

OK YO INSTRUMENTS, INC.

6-18-14 Nishikasai Edogawa-ku, Tokyo 134-0088 Phone +81-3-3686-4711 Fax +81-3-3686-0831

Finally, a high spatial resolution, high sensitivity, compact and low cost Raman microscopy system.

Nanofinder[®] **FLEX**

The Nanofinder FLEX is a flexible 3D Raman microscope that retains the basic features and performance of our highend Nanofinder 30 system. Modular assemblies including a new compact Raman optical unit.

•The Raman optical unit is installed directly upon an upright microscope, creating a clean and compact installation taking no more bench space than a standard microscope.

•Other units are fiber optic coupled and can be placed in convenient locations for ease of operation and a space saving installation.

Simple changeover of excitation laser and Raman optical system when required.

Nanofinder FLEX has high special resolution < 300 nm and high sensitivity without complex optical adjustments.

The system uses our highly acclaimed Nanofinder software with powerful imaging and data management capabilities.

New, lower cost Raman unit and piezo stage are now in within the reach of most laboratory budgets. For further savings and flexibility, the Nanofinder FLEX system can be used with many existing lasers, CCD Cameras, and spectrometers.

Raman optical unit attached on microscope

Control-rack (Embedding PC, spectrometer, CCD)

Easy materials identifying with Raman

Spectral window

560 nm

ZnTe defect measurement

Topographic measurement with confocal microscope mode

Spectroscopic imaging of ZnTe with photoluminescence mode 3D mapping using the 560 nm Raman peak

2Dmapping measurement Spectral window G-band Raman spectrum of Carbon nano tube

2D Raman image of CNT (at G-band ${\sim}1593~{\rm cm}^{{\scriptscriptstyle -1}})$

Measurement with high sensitivity

Detection of 4th order Si Raman spectrum as demonstration of height sensitivity

Depth analysis for laminated film by confocal Raman mapping

We made a Raman mapping at a laminated area in depth direction. In confocal system, Spectral depth profile can be measured by moving focus position in Laminated film.

3D Raman image analysis on positive electrode suface of Li-Ion battery

3D Raman mapping on a positive electrode of a degradation Li-Ion battery were conducted. Distributions of normal electrode material (LiCoO₂) and degradation material (Co₃O₄) from it can be observed as raman images .

Raman intensity image of LiCoO₂ peak (600 cm⁻¹)

Typical Raman spectrum

3D Mapping conditions

Excitation laser wavelength: 532 nm Excitation laser power: 5 mW Exposure time: 1 sec/point Total mapping time: 5 hours Mapping points: 32x32x10 Objective lents: 100x N.A. 0.9

As a material for an positive electrode of Li-Ion battery, LiCoO2 is mainly used. The electrode material, however, degrades after repeating discharge and charge and then some porsions of it turn into Co3O4, which can't contribute to charge. Material distributions on the surface can be observed with distinct peak intensity images, because different spectra are taken from these materials respectively.

As shown in the upper images, there is a competely different pattern between normal LiCoO2 portion and degradation Co3O4 portion.

Nanofinder®FLEX

Spectroscopic analysis with high spatial resolution imaging

Specifications

Nanofinder[®] FLEX

3D Raman microscope system

System configuration

-Upright microscope Objective lens (x100, x50) /Monitoring CCD
-Raman optical unit (1 wavelength)
-Imaging spectrometer
-Cooled CCD
-Piezo stage (X-Y-Z)
-Excitation laser (532 nm)
-System controller, software / LCD monitor

Overall specifications

-Spatial resolution XY: < 300 nm (100x, N.A. 0.95) Z: < 900 nm (100x, N.A. 0.95) -Wavenumber range: 50 cm⁻¹ ∼4000 cm⁻¹ (532 nm) -Wavenumber resolution: 2 cm⁻¹ (f=35 cm imaging spectrometer)

Each unit specifications

-Raman optical unit Resettable filter unit Fiber connecting (incident and output) FC connector coupling

-Imaging spectrometer MS3504i
Focal length: 35 cm, F: 3.8
Reciprocal linear dispersion: 2.37 nm/mm
@ 1200G/mm
Wavelength resolution: 0.06 nm/pixel @ 550 nm, 1200G/mm
Wavenumber resolution: 2 cm⁻¹/pixel @ 550 nm, 1200G/mm
4 gratings available (selectable)

-Cooled CCD detector Elements: 1024 x 127 Element size: 26 x 26 μ m Cooling temperature:-100 ℃ (water), -80 ℃ (air) -Piezo stage X-Y-Z axis stroke: 100 μ m (Closed loop) Resolution: 5 nm Repetition accuracy: ±5 nm

-Excitation laser

- LD pumped solid state laser Wavelength: 532 nm Power : 50 mW
 LD laser
- Wavelength: 785 nm Power : 70 mW Other lasers available

-Controller Software: Software for Nanofinder Main function: Control of spectrometer/piezo stage Measurement of Raman spectra and images Correlation of a spectral background 2D/3D data display Image restructure from 2D/3D data OS: Windows(r) XP Professional

-Size

Microscope and Raman optical unit W300 x D400 x H770 mm Desk with 19 inch mount (option) W600 x D850 x H700 mm (Including as follows: spectrometer/CCD, laser, piezo/system controller)

-Power supply 100VAC-12A

-Options

Compatibility with AFM for simultaneous AFM/Raman measurement