
**UltraFast
Innovations**

YOUR KEY to innovation and success

Cavity-Ringdown (CRD) Reflectometer and Loss Meter **GLACIER®**

Our reflectometer GLACIER uses the extreme sensitivity of cavity ring-down spectroscopy to quantify the losses of advanced optical coatings down to 5 ppm. As a typical application the device can characterize supra-mirrors with up to 99.9995% reflectivity. Conventional absorption and reflection measurements are not sufficiently sensitive to quantify today's super-reflective mirror coatings and are typically limited to the >1000 ppm range (corresponding to <99.9% reflectivity). Cavity ring-down spectroscopy measures optical losses by the decay of the energy stored inside a cavity.

The technique reaches unrivaled sensitivity because the losses are experienced over and over again after every round trip inside the cavity. Smaller losses lead to longer intra-cavity dwell time thereby automatically increasing the mea-

surement precision. The device features high-speed data acquisition and allows to record measurements within seconds. It is delivered complete with a computer and a user-friendly software interface for acquisition and real-time analysis.

Key Product Features:

- Reflectivity measurements
 - Reflectivities up to 99.9995%
 - Various angles of incidence: 5°-45° (and 0°)
 - s and p polarization (separately)
- Antireflective coating characterization Reflectivity down to 0.0005% (5 ppm)
- Simple and reproducible alignment for 0.5", 1" and 2" optics
- Spring-loaded mirror fixtures for reproducible mounting without strain
- Computer and user-friendly software interface included
- High-speed data acquisition and real-time analysis
- Complete measurement and analysis within seconds
- Available wavelengths: 375-1550 nm other wavelengths upon request
- Standard Footprint: 90 x 45 cm²

TII 東京インスツルメンツ
TOKYO INSTRUMENTS

グローバルにネットワークを広げ、最先端の科学をお客様に提供

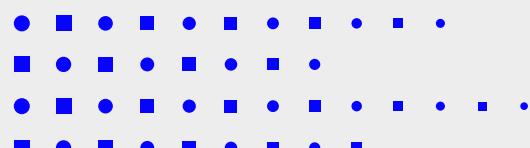
本社: 〒134-0088 東京都江戸川区西葛西6-18-14 T.ビル

営業所: 〒532-0003 大阪府大阪市淀川区宮原4-1-46 新大阪北ビル

Tel.03-3686-4711

Tel.06-6393-7411

URL: <https://www.tokyoinst.co.jp> Mail: sales@tokyoinst.co.jp

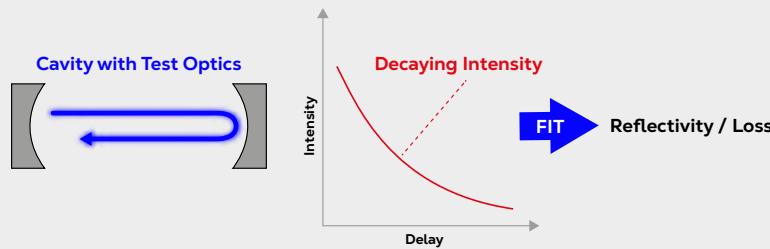

TII Group Company

UNISOKU Group

超高真空・極低温走査型プローブ顕微鏡
高速分光測定装置、クライオスタット

LOTIS TII Nd:YAGレーザー、Ti:Siレーザー
OPOレーザー

● 本カタログに記載されている内容は、改良のため予告無く変更する場合があります。(製品の仕様、性能、価格などはカタログ発行当時のものです)
● 本カタログに記載されている内容の一部または全部を無断で転載することは禁止されております。
● 本カタログに記載されているメーカー名、製品名などは各社の商標または登録商標です。



UltraFast Innovations

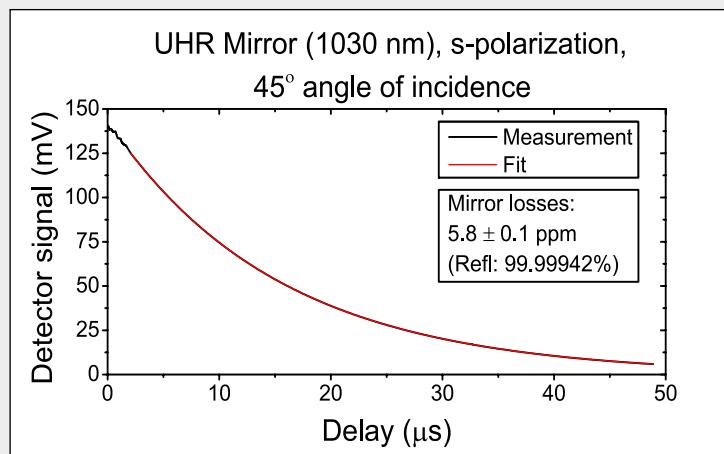
	GLACIER	GLACIER ⁺	GLACIER ⁺⁺
Number of wavelengths	One	Two	Three
Wavelength range	375-1550 nm	375-1550 nm	375-1550 nm
Footprint	90 x 45 cm ²		90 x 55 cm ²

Working Principle:

Glacier uses the principle of reflectivity/loss measurements with cavity ring-down spectroscopy based on very low losses at each mirror bounce. The laser pulses travel inside a cavity experiencing optical losses over and over again during each round trip.

Sketch of the working principle of GLACIER, measurement and fitting procedure.

The device measures the time-dependent intensity $I(t)$ leaked through an end mirror of the cavity (center). The signal decays with a time constant depending on the intra-cavity losses and can be fitted to the following exponential function:


$$I(t) = I(t_0) \cdot \exp\left(-\frac{t}{\tau}\right)$$

The time constant τ is inversely proportional to the optical losses $(1-R)$ of the cavity with total reflectivity R :

$$\tau = \frac{n}{c} \cdot \frac{l}{(1-R)}$$

where n is the refractive index, c is the speed of light, and l is the cavity length.

Sample Measurement:

Typical GLACIER measurement of an ultra-high-reflective mirror for 1030 nm. To obtain the data, the cavity losses with and without the sample were measured and subtracted. This provides an absolute measurement of the test mirror.