
UltraFast
Innovations

YOUR KEY to innovation and success

Light Field Synthesizer **CAPELLA**

We present the first commercial Light Field Synthesizer enabling synthesis and sub-femtosecond control of super-octave light transients.

Key Product Features:

- Shortest pulse available
2 fs FWHM
- Overall transmission
>60% @ 9 mm beam
>70% @ 7 mm beam
- Parallel pulse compression of multiple channels:
<9 fs (700-1000 nm)
<8 fs (500-700 nm)
<10 fs (400-500 nm)
- Attosecond-scale delay among the channels
- Interferometric stability
Short term passive stability: <100 mrad
Long term active-loop stability: <50 mrad
- Incident polarization:
s or p polarization
- Laptop and user-friendly software interface included
- Small Footprint:
30 x 20 cm²

TII 東京インスツルメンツ
TOKYO INSTRUMENTS

グローバルにネットワークを広げ、最先端の科学をお客様に提供

本社: 〒134-0088 東京都江戸川区西葛西6-18-14 T.ビル

Tel. 03-3686-4711

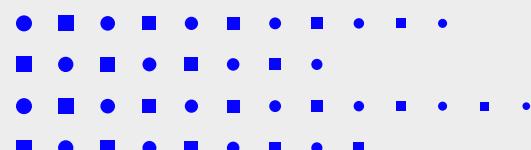
営業所: 〒532-0003 大阪府大阪市淀川区宮原4-1-46 新大阪北ビル

Tel. 06-6393-7411

URL: <https://www.tokyoinst.co.jp> Mail: sales@tokyoinst.co.jp

TII Group Company

UNISOKU
Group

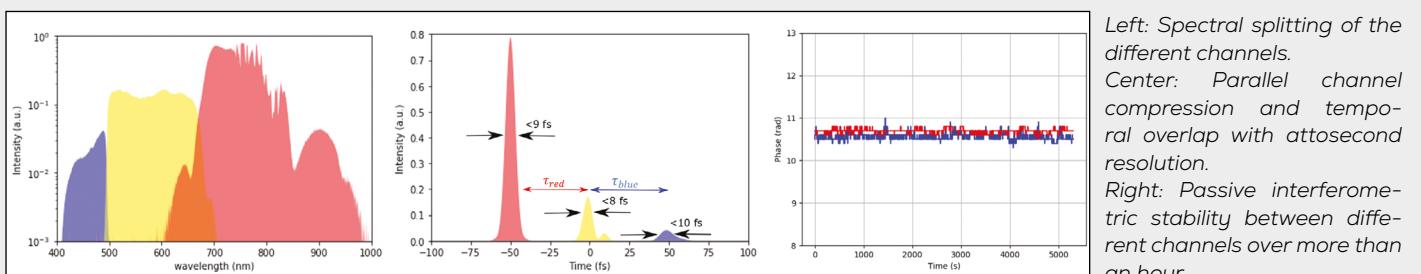

超高真空・極低温走査型プローブ顕微鏡
高速分光測定装置、クライオスッタット

LOTIS **TII** Nd:YAGレーザー、Ti:Siレーザー
OPOレーザー

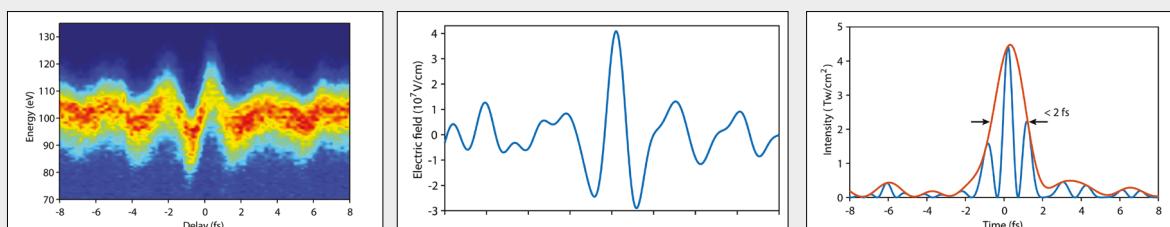
● 本カタログに記載されている内容は、改良のため予告無く変更する場合があります。(製品の仕様、性能、価格などはカタログ発行当時のものです)

● 本カタログに記載されている内容の一部または全部を無断で転載することは禁止されております。

● 本カタログに記載されているメーカー名、製品名などは各社の商標または登録商標です。



UltraFast Innovations


Specifications:	CAPELLA		
Number of channels	3		
Wavelength range	400-1000 nm		
Required Input energy	>290 μ J (700-1000 nm)	>60 μ J (500-700 nm)	>14 μ J (400-500 nm)
Polarization	s- or p-polarized input light		
Introduced dispersion	> -380 fs ²	> -370 fs ²	> -560 fs ²
Temporal accuracy	2 nm $\hat{=}$ 7 as		
Maximum delay	60 ps		
Optics size	0.5 inch		
Overall transmission	>60% @9 mm beam >70% @7 mm beam		
Footprint	30 x 20 cm ²		

Working principle:

CAPELLA is based on spectral division of a coherent supercontinuum into three different bands (channels) by chirped dichroic beamsplitters [1]. Using an interferometric spatio-temporal superposition a field waveform can be controlled and synthesized. All constituent pulses from the channels of CAPELLA are temporally compressed by chirped mirrors down to pulse duration of <10 fs. Introducing different time-delays among the channels enables the shaping and sub-cycle control of the field waveform [2].

Due to its solidness, compactness and excellent thermal capabilities, CAPELLA can maintain the optical pathlength stable among the different channels for many hours. Furthermore, an extra active-controlled loop improves the interferometric stability to <50 mrad. Apart from the generation of waveforms, CAPELLA offers the shortest pulses available in market to date, see below:

References:

- [1] A. Wirth et al., "Synthesized Light Transients," *Science* **334** (6053), 195-200 (2011).
- [2] M. Th. Hassan et al., "Optical attosecond pulses and tracking the nonlinear response of bound electrons," *Nature* **530**, 66-70 (2016).