

DCS-120 MP System Records Multiphoton FLIM and PLIM

The DCS-120 MP is an extended version of the bh DCS-120 confocal scanning FLIM System. It uses multiphoton excitation by a femtosecond titanium-sapphire laser, fast galvanometer scanning, non-descanned detection, hybrid detector technology, and single-photon recording by bh's multi-dimensional TCSPC process. An AOM is included to control the laser power and to modulate the laser for PLIM acquisition. The system records FLIM data in two fully parallel recording channels, runs Z stacks, accumulates fast FLIM time series, and records simultaneously FLIM and PLIM. All components, including the laser and the AOM, are controlled by bh's SPCM 64 bit data acquisition software. By using bh's 64 bit Megapixel FLIM technology, images of the full field of view of the microscope can be recorded at diffraction-limited resolution. Image formats as large as 2048 x 2048 pixels with 256 time channels per pixel are available.

Convallaria sample with 1024 x 1024 pixels, 256 time channel per pixel. DCS-120 scan head, Nikon Eclipse inverted microscope, Spectra Physics Mai Tai laser. Microscope lens 20x NA = 0.5. Excitation wavelength 800 nm

Due to its fast scan rates and its high sensitivity, the DCS-120 MP is compatible with live cell and life tissue imaging. Typical applications are measurements of local molecular environment parameters, protein interaction experiments by FRET, imaging of metabolic parameters derived from the fluorescence decay functions of endogenous fluorophores, and correlated metabolic and oxygen saturation imaging.

Phosphorescence Lifetime Image, recorded by bh's PLIM technique based on laser modulation and dual-time-base recording. SPCImage FLIM / PLIM data analysis.

Main Panel of SPCM Software. Images in two spectral channels, control panels for scanner, laser and AOM, detectors, and predefined setup panel for easy selection of imaging mode.

Key Specifications

Excitation Wavelength Excitation pulse frequency Coupling into scan head Power control Laser modulation for PLIM AOM response time Laser and AOM control Microscopes Detection beam path

Detectors

Detector protection Detection wavelength selection Scanner Scanner control Scan format, pixels Scan format, time channels (max) Scan rate, frames per sec., at zoom 4 Scan rate, lines per sec., at zoom 4 Additional scanner ports

TCSPC System

FLIM modes

FCS mode

Selection of operation mode FLIM data analysis

Femtosecond T	itanium:Sapphire	Laser	
Typ. 750 to 980) nm, depends on l	aser	
75 to 80 MHz,	depends on laser		
Free beam	1		
Acousto-optical modulator (AOM)			
Acousto-optical modulator (AOM)			
200 ns in PLIM mode			
via SPCM TCSPC/FLIM data acquisition software			
All inverted microscopes of Zeiss, Nikon, and Olympus			
Non-descanned (direct) detection			
Optional transmission path for SHG recording			
Two HPM-100-40 GaAsP hybrid detectors			
Option: HPM-100-50 GaAs hybrid detectors			
Option: MW-FLIM GaAsP 16-wavelength detector			
Shutter and ove	rload shutdown	U	
Beamsplitter / filter cube in front of detectors			
bh DCS-120 sc	an head		
Via SPCM TCS	SPC/FLIM data ac	quisition softwa	re
2048 x 2048	1024 x 1024	512 x 512	256 x 256
256	1024	4096	4096
0.37	0.65	1.47	2.95
500	750	750	750
Additional port	for visible-wavele	ength laser	
Two outputs for additional confocal detectors			
Two parallel SPC-150, SPC-150N or SPC-160 channels			
Upgrade to thre	e or four parallel	channels possibl	e
X-Y scan, Z Sta	ack by record-and-	save procedure,	Z Stack
by Mosaic FLIM function, time series FLIM by record-and-save			
procedure, time series FLIM by Mosaic FLIM function, fast			
accumulated time series, PLIM, simultaneous FLIM and PLIM			
Online FCS, by correlating photon macro times, spot selected by			
beam park func	tion of scanner		
Via predefined-	setup panel		
By bh SPCImage data analysis software. 1-2-3 exponential fit,			
incomplete-dec	ay model, 1st. mo	ment analysis. Ii	mages of lifetime
components, amplitudes of components, intensity and amplitude-			
weighted lifetime, relative intensity contribution, FRET efficiency.			
1D histograms in region of interest, 2D histograms of decay			
parameters, phasor plot.			

For details, please see Handbook of DCS-120 Confocal Scanning FLIM System, 6th ed. or bh TCSPC Handbook, 6th ed., both available for free download at www.becker-hickl.com.

51