Features and Benefits

- **Peak QE up to 95%**

- **Fringe suppression technology as standard**
 Fringing greatly reduced (Deep-Depletion) or minimized (Back-Thinned ‘BVF’)

- **Extended range dual-AR option**
 Superior UV-NIR broadband QE

- **TE cooling down to -100°C**
 Critical for elimination of dark current detection limit - no inconvenience associated with LN,

- **Ultravac™**
 Critical for sustained vacuum integrity and to maintain unequalled cooling and QE performance, year after year

- **Multi-Megahertz Readout**
 High repetition rates achievable with low noise electronics

- **Crop Mode Operation**
 Up to 1,600 spectra per second rates

- **Single UV-grade fused silica window**
 Best UV-NIR throughput performance, specific AR coating and wedge options available

- **Down to 13.5 x 13.5 µm pixels**
 Optimized format for high resolution spectroscopy

- **Software-selectable pre-amplifier gain**
 Choice of best SNR performance or dynamic range at the touch of a button

- **USB 2.0 connection**
 Ideal for laptop operation

- **Solis software for Spectroscopy**
 Comprehensive, user-friendly interface for simultaneous detector & spectrograph control

- **Software Development Kit (SDK)**
 Ease of control integration into complex setups: Matlab, Labview, Visual Basic or C/C++

Spectroscopy at Pace

The high-end USB 2.0 Newton CCD series brings together Andor’s ultra fast, low-noise electronics platform and market-leading deep thermo-electric cooling to -100°C, complemented by Andor’s Ultravac™ technology with its un-matched reliability track record in the scientific and industrial communities.

Broadband detection rates of up to 1,600 spectra per second are enabled with intelligent Crop Mode operation. The Newton CCD is an ideal tool for ultrafast UV, VIS or NIR spectroscopy (or all the above with the Dual AR-coating BEX2-DD technology), such as 2D chemical mapping, online process monitoring or non-invasive medical diagnosis.

The Newton 940 series offers 13.5 x 13.5 µm pixels for the highest UV to VIS resolution spectroscopy, while the 920 series and its 26 x 26 µm offers the highest dynamic range for UV to NIR applications. Both > 6.6 mm high sensors are ideally suited for multi-track spectroscopy or hyper-spectral imaging.

Specifications Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active pixels</td>
<td>1024 x 255 (1024 x 256 for Bx-DD model) or 2048 x 512</td>
</tr>
<tr>
<td>Pixel size (W x H)</td>
<td>26 x 26 or 13.5 x 13.5 µm</td>
</tr>
<tr>
<td>Image area</td>
<td>Up to 27.6 x 6.9 mm</td>
</tr>
<tr>
<td>Register well depth:</td>
<td></td>
</tr>
<tr>
<td>Standard mode</td>
<td>1,000,000 e-</td>
</tr>
<tr>
<td>High Capacity mode</td>
<td>600,000 e-</td>
</tr>
<tr>
<td>High Sensitivity mode</td>
<td>150,000 e-</td>
</tr>
<tr>
<td>Maximum cooling</td>
<td>-100°C</td>
</tr>
<tr>
<td>Maximum spectra per sec</td>
<td>1,612</td>
</tr>
<tr>
<td>Read noise</td>
<td>As low as 2.5 e-</td>
</tr>
<tr>
<td>Dark current</td>
<td>As low as 0.0001 e/pixel/sec</td>
</tr>
</tbody>
</table>
Key Specifications

<table>
<thead>
<tr>
<th>Model number</th>
<th>DU920P</th>
<th>DU920P Bx-DD</th>
<th>DU940P</th>
</tr>
</thead>
</table>
| Sensor options | • BU: Back Illuminated CCD, UV-Enhanced, 350 nm optimized
• BU2: Back Illuminated CCD, UV-Enhanced, 250 nm optimized
• BVF: Back Illuminated CCD, Vis-optimized and anti-fringing
• OE: Open Electrode CCD
• BR-DD: Back Illuminated, Deep Depletion CCD with anti-fringing
• BEX2-DD: Back Illuminated, Deep Depletion CCD with anti-fringing, extended range dual AR coating
• BU: Back Illuminated CCD, UV-Enhanced, 350 nm optimized
• BU2: Back Illuminated CCD, UV-Enhanced, 250 nm optimized
• BV: Back Illuminated CCD, Vis-optimized
• FI: Front Illuminated CCD
• UV: Front Illuminated CCD with UV coating |

Active pixels	1024 x 255	1024 x 256	2048 x 512
Pixel size	26 x 26 μm	26 x 26 μm	13.5 x 13.5 μm
Image area	26.7 x 6.7 mm with 100% fill factor	26.7 x 6.7 mm with 100% fill factor	27.6 x 6.9 mm with 100% fill factor

Minimum temperatures	Air cooled	-80°C	-95°C	-100°C
Coolant recirculator	-			
Coolant chiller, coolant @ 10°C, 0.75 l/min	-			

| Max spectra per second | 144 (OE - Full Vertical Bin)
273 (Full Vertical Bin)
1,149 (OE - Crop Mode - 20 rows)
1,612 (Crop Mode - 20 rows) | 272 (Full Vertical Bin), 1,587 (Crop Mode - 20 rows) | 122 (Full Vertical Bin), 943 (Crop Mode - 20 rows) |

| System window type | BV, BVF, FI, UV, UVB, OE sensors: UV-grade fused silica, 'Broadband VUV-NIR', unwedged
BR-DD sensor: UV-grade fused silica, 'VIS-NIR enhanced', wedged
BEX2-DD sensor: UV-grade fused silica, 'Broadband VUV-NIR', wedged (Various AR coatings & MgF₂ options available) |

| Blemish specifications | Grade 1 sensor from supplier. Camera blemishes as defined by Andor Grade A

Advanced Specifications

| Dark current, e/pixel/sec © max cooling | FI, OE, UV
BU, BU2, BV, UVB
BVF
Bx-DD | 0.0003
0.0003
0.0002
- | -
0.003
0.0003
- | 0.0001
0.0002
-
-
- |

| Register well depth | Standard mode
High Sensitivity mode
High Capacity mode | 1,000,000 e⁻
-
- | 1,000,000 e⁻
-
- | -
150,000 e⁻
600,000 e⁻
- |

| Active area pixel well depth | BU, BU2, BVF: 400,000 e⁻
OE: 300,000 e⁻
- | 650,000 e⁻
BU, BU2, BV: 100,000 e⁻
FI, UV: 140,000 e⁻ |

| Read noise (e⁻) | 50 kHz
1 MHz
3 MHz | 50 kHz
1 MHz
3 MHz
50 kHz
1 MHz
3 MHz | 50 kHz
1 MHz
3 MHz
50 kHz
1 MHz
3 MHz |

| Standard mode: Typ (Max) | 4 (8)
12 (16)
20 (30) | 4 (8)
12 (15)
15 (30)
2.5 (4)
7 (12)
11 (15) | 9 (12)
27 (32)
40 (56) |

| High Sensitivity mode: Typ (Max)
High Capacity mode: Typ (Max) | -
-
- | -
-
-
-
- |

| Sensitivity (e⁻/count) | Adjustable from 2.5 - 10
Adjustable from 2.5 - 10
Adjustable from 1 - 4
Adjustable from 4 - 16 |

Linearity	Better than 99%
Digitization	16 bit
Vertical clock speed	Software selectable between 2 - 179 μs

Have you found what you are looking for?

Need to work further into the NIR? The iDus InGaAs series, with up to 1024 pixel linear array with transmission to 2.2 μm.

Need a customized version? Please contact us to discuss our Customer Special Request options.

The Newton series combines seamlessly with Andor's research grade Kymera and Shamrock Czerny-Turner spectrographs.
Newton CCD
27 mm wide, 3 MHz
Spectroscopy CCD

Dark Current

Quantum Efficiency Curves
25°C

Typical Setup

Readout Rate & Speed

[Diagrams of dark current and quantum efficiency curves, typical setup, and readout rate & speed]
Creating the Optimum Product for you

Step 1. Choose the sensor array size

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 x 255 array</td>
<td>920</td>
</tr>
<tr>
<td>1024 x 255 array (BxDD)</td>
<td></td>
</tr>
<tr>
<td>2048 x 512 array</td>
<td>940</td>
</tr>
</tbody>
</table>

Step 2. Choose the sensor type option

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back Illuminated CCD, Vis-optimized</td>
<td>BV</td>
</tr>
<tr>
<td>Back Illuminated CCD, Vis-optimized and anti-fringing</td>
<td>BVF</td>
</tr>
<tr>
<td>Back Illuminated, Deep Depletion CCD with fringe suppression and extended range dual AR coating</td>
<td>BEX2-DD</td>
</tr>
<tr>
<td>Back Illuminated, Deep Depletion CCD with fringe suppression</td>
<td>BR-DD</td>
</tr>
<tr>
<td>Front Illuminated CCD</td>
<td>F</td>
</tr>
<tr>
<td>Back Illuminated CCD, Blue optimized AR coating</td>
<td>BU</td>
</tr>
<tr>
<td>Back Illuminated CCD, AR coated for optimized performance in the 250 nm region</td>
<td>BU2</td>
</tr>
<tr>
<td>Front Illuminated CCD with UV coating</td>
<td>UV</td>
</tr>
<tr>
<td>Open Electrode CCD</td>
<td>OE</td>
</tr>
</tbody>
</table>

Step 3. Select an alternative camera window (optional)

The standard window has been selected to satisfy most applications. However, other options are available. The alternative camera window code must be specified at time of ordering.

To view and select other window options please refer to the ‘Camera Windows Supplementary Specification Sheet’ which gives the transmission characteristics, product codes and procedure for entering the order. Further detailed information on the windows can be found in the Technical note – ‘Camera Windows: Optimizing for Different Spectral Regions’.

Step 4. Select the required accessories and adapters

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant re-circulator for enhanced cooling performance</td>
<td>XW-RECR</td>
</tr>
<tr>
<td>Oasis 160 Ultra Compact Chiller Unit (tubing to be ordered separately)</td>
<td>ACC-XW-CHIL-160</td>
</tr>
<tr>
<td>6 mm tubing options for ACC-XW-CHIL-160 (2x2.5 m or 2x5 m lengths)</td>
<td>ACC-6MM-TUBING-2X2.5/ACC-6MM-TUBING-2X5M</td>
</tr>
<tr>
<td>C-mount lens adaptor</td>
<td>LM-C</td>
</tr>
<tr>
<td>F-mount lens adaptor</td>
<td>LM-NIKON-F</td>
</tr>
<tr>
<td>Nikon F-mount lens adaptor with shutter</td>
<td>LMS-NIKON-F-NS25B</td>
</tr>
<tr>
<td>Shutter Driver for NS25B Bistable Shutter (not needed for Kymera/Shamrock spectrographs)</td>
<td>ACC-SD-VED24</td>
</tr>
<tr>
<td>Bistable Shutter, Standalone (not needed for Kymera/Shamrock spectrographs)</td>
<td>ACC-SHT-NS25B</td>
</tr>
</tbody>
</table>

Spectrograph Compatibility

The Newton series is fully compatible with Andor’s Kymera and Shamrock spectrographs (163 - 750 nm focal lengths). Spectrograph mounting flanges and software control are available for a wide variety of 3rd party spectrographs including, McPherson, JY/Horiba, PI/Acton, Chromex/Bruker, Oriel/Newport, Photon Design, Dongwoo, Bentham, Solar TII and others.

Step 5. Select the required software

The Newton CCD requires at least one of the following software options:

Solis for Spectroscopy A 32-bit and fully 64-bit enabled application for Windows (7, 8, 8.1 and 10) offering rich functionality for data acquisition and processing. AndorBasic provides macro language control of data acquisition, processing, display and export. Control of Andor Kymera and Shamrock spectrographs and a very wide range of 3rd party spectrographs is also available, see list in step 4 above.

Andor SDK A software development kit that allows you to control the Andor range of cameras from your own application. Available as 32/64-bit libraries for Windows (7, 8, 8.1 and 10) and Linux. Compatible with C/C++, C#, Delphi, VB.NET, LabVIEW and Matlab.
Newton CCD

27 mm wide, 3 MHz
Spectroscopy CCD

Product Drawings
Dimensions in mm [inches]

Weight: 2.7 kg [5 lb 15 oz]

Connecting to the Newton

Camera Control
Connector type: USB 2.0

TTL / Logic
Connector type: SMB, provided with SMB - BNC cable
1 = Fire (Output), 2 = External Trigger (Input), 3 = Shutter (Output)

I2C connector
Compatible with Fischer SC102A054-130
1 = Shutter (TTL), 2 = I2C Clock, 3 = I2C Data, 4 = +5 Vdc, 5 = Ground

Minimum cable clearance required at rear of camera
90 mm

Applications Guide

<table>
<thead>
<tr>
<th>BU/ BU2 models</th>
<th>BV models</th>
<th>BF models</th>
<th>BR-DD models</th>
<th>BEX2-DD models</th>
<th>FI models</th>
<th>OE models</th>
<th>UV models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption/Transmittance/Reflection</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Atomic Emission Spectroscopy</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Fluorescence & Luminescence</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>NIR Spectroscopy</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Raman Spectroscopy (244 – 488 nm)</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Raman Spectroscopy (514, 531, 633 nm)</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Raman Spectroscopy (785, 830 nm)</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>UV-VIS-NIR broadband spectroscopy</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

○ = Suitable ● = Optimum
Order Today

Need more information? At Andor we are committed to finding the correct solution for you. With a dedicated team of technical advisors, we are able to offer you one-to-one guidance and technical support on all Andor products. For a full listing of our local sales offices, please see: andor.com/contact

Our regional headquarters are:

Europe
Belfast, Northern Ireland
Phone +44 (28) 9023 7126
Fax +44 (28) 9031 0792

North America
Concord, MA, USA
Phone +1 (860) 290 9211
Fax +1 (860) 290 9566

Japan
Tokyo
Phone +81 (3) 6732 8968
Fax +81 (3) 6732 8939

China
Beijing
Phone +86 (10) 8271 9066
Fax +86 (10) 8271 9055

Footnotes: Specifications are subject to change without notice

1. Figures are typical unless otherwise stated.
2. Edge pixels may exhibit a partial response.
3. Cooling is provided by the use of an external mains driven power supply. Minimum temperatures listed are typical values with ambient temperature of 20°C. Systems are specified in terms of minimum dark current achievable rather than absolute temperature.
4. Based on horizontal pixel readout rate of 3 MHz and a vertical shift speed of 12.9 μs (920 models), 14.5 μs (940 models) and 25.7 μs (OE model). Achievable spectral rates will vary with selected trigger mode. Due to the nature of the Open Electrode sensor, the minimum Vertical Shift Speed (VSS) available is 25.7 μs, which will produce a lower maximum spectral rate compared to other models in the series.
5. Shown for High Capacity mode. For high sensitivity mode the measurable well depth value will be lower, as a result of the combination of higher sensitivity values and A/D 16 bits digitization.
6. Readout noise is for the entire system. It is a combination of CCD readout noise and A/D noise. Measurement is for Single Pixel readout with the CCD at a temperature of -80°C and minimum exposure time under dark conditions. Noise values will change with readout mode.
7. Linearity is measured from a plot of counts vs exposure time under constant photon flux up to the saturation point of the system.
8. Vertical speeds are software selectable. All sensors are designed to give optimum Charge Transfer Efficiency (CTE) at 12.9 μs (920 models), 14.5 μs (940 models) and 25.7 μs (OE model). Vertical pixel shift, some decrease in CTE may be observed at faster shift speeds.
9. The graph shows typical dark current level as a function of temperature. The dark current measurement is averaged over the CCD area excluding any regions of blemishes.
10. Quantum efficiency of the sensor as supplied by the sensor manufacturer
11. The chart shows the maximum possible readout rates available when using Multi-track mode, each track being defined as 20 rows. Crop mode is a specific single-track readout method optimized for rapid kinetic-type acquisition.